Quantitation of human cytochrome P450 2D6 protein with immunoblot and mass spectrometry analysis

Aiming Yu, Jun Qu, Melanie A. Felmlee, Jin Cao, Xi Ling Jiang

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Accurate quantification of cytochrome P450 (P450) protein contents is essential for reliable assessment of drug safety, including the prediction of in vivo clearance from in vitro metabolism data, which may be hampered by the use of uncharacterized standards and existence of unknown allelic isozymes. Therefore, this study aimed to delineate the variability in absolute quantification of polymorphic CYP2D6 drug-metabolizing enzyme and compare immunoblot and nano liquid chromatography coupled to mass spectrometry (nano-LC/MS) methods in identification and relative quantification of CYP2D6.1 and CYP2D6.2 allelic isozymes. Holoprotein content of in-house purified CYP2D6 isozymes was determined according to carbon monoxide difference spectrum, and total protein was quantified with bicinchoninic acid protein assay. Holoprotein/total CYP2D6 protein ratio was markedly higher for purified CYP2D6.1 (71.0%) than that calculated for CYP2D6.1 Supersomes (35.5%), resulting in distinct linear calibration range (0.05-0.50 versus 0.025-0.25 pmol) that was determined by densitometric analysis of immunoblot bands. Likewise, purified CYP2D6.2 and CYP2D6.10 and the CYP2D6.10 Supersomes all showed different holoprotein/total CYP2D6 protein ratios and distinct immunoblot linear calibration ranges. In contrast to immunoblot, nano-LC/MS readily distinguished CYP2D6.2 (R296C and S486T) from CYP2D6.1 by isoformspecific proteolytic peptides that contain the altered amino acid residues. In addition, relative quantitation of the two allelic isozymes was successfully achieved with label-free protein quantification, consistent with the nominated ratio. Because immunoblot and nano-LC/MS analyses measure total P450 protein (holoprotein and apoprotein) in a sample, complete understanding of holoprotein and apoprotein contents in P450 standards is desired toward reliable quantification. Our data also suggest that nano-LC/MS not only facilitates P450 quantitation but also provides genotypic information.

Original languageEnglish (US)
Pages (from-to)170-177
Number of pages8
JournalDrug Metabolism and Disposition
Volume37
Issue number1
DOIs
StatePublished - Jan 2009
Externally publishedYes

Fingerprint

Cytochrome P-450 CYP2D6
Mass Spectrometry
Liquid Chromatography
Isoenzymes
Proteins
Apoproteins
Calibration
Carbon Monoxide
Pharmaceutical Preparations
Cytochrome P-450 Enzyme System
Safety
Amino Acids
Peptides
Enzymes

ASJC Scopus subject areas

  • Pharmacology
  • Pharmaceutical Science

Cite this

Quantitation of human cytochrome P450 2D6 protein with immunoblot and mass spectrometry analysis. / Yu, Aiming; Qu, Jun; Felmlee, Melanie A.; Cao, Jin; Jiang, Xi Ling.

In: Drug Metabolism and Disposition, Vol. 37, No. 1, 01.2009, p. 170-177.

Research output: Contribution to journalArticle

Yu, Aiming ; Qu, Jun ; Felmlee, Melanie A. ; Cao, Jin ; Jiang, Xi Ling. / Quantitation of human cytochrome P450 2D6 protein with immunoblot and mass spectrometry analysis. In: Drug Metabolism and Disposition. 2009 ; Vol. 37, No. 1. pp. 170-177.
@article{30f29016c97c4c92944fbc02e916051a,
title = "Quantitation of human cytochrome P450 2D6 protein with immunoblot and mass spectrometry analysis",
abstract = "Accurate quantification of cytochrome P450 (P450) protein contents is essential for reliable assessment of drug safety, including the prediction of in vivo clearance from in vitro metabolism data, which may be hampered by the use of uncharacterized standards and existence of unknown allelic isozymes. Therefore, this study aimed to delineate the variability in absolute quantification of polymorphic CYP2D6 drug-metabolizing enzyme and compare immunoblot and nano liquid chromatography coupled to mass spectrometry (nano-LC/MS) methods in identification and relative quantification of CYP2D6.1 and CYP2D6.2 allelic isozymes. Holoprotein content of in-house purified CYP2D6 isozymes was determined according to carbon monoxide difference spectrum, and total protein was quantified with bicinchoninic acid protein assay. Holoprotein/total CYP2D6 protein ratio was markedly higher for purified CYP2D6.1 (71.0{\%}) than that calculated for CYP2D6.1 Supersomes (35.5{\%}), resulting in distinct linear calibration range (0.05-0.50 versus 0.025-0.25 pmol) that was determined by densitometric analysis of immunoblot bands. Likewise, purified CYP2D6.2 and CYP2D6.10 and the CYP2D6.10 Supersomes all showed different holoprotein/total CYP2D6 protein ratios and distinct immunoblot linear calibration ranges. In contrast to immunoblot, nano-LC/MS readily distinguished CYP2D6.2 (R296C and S486T) from CYP2D6.1 by isoformspecific proteolytic peptides that contain the altered amino acid residues. In addition, relative quantitation of the two allelic isozymes was successfully achieved with label-free protein quantification, consistent with the nominated ratio. Because immunoblot and nano-LC/MS analyses measure total P450 protein (holoprotein and apoprotein) in a sample, complete understanding of holoprotein and apoprotein contents in P450 standards is desired toward reliable quantification. Our data also suggest that nano-LC/MS not only facilitates P450 quantitation but also provides genotypic information.",
author = "Aiming Yu and Jun Qu and Felmlee, {Melanie A.} and Jin Cao and Jiang, {Xi Ling}",
year = "2009",
month = "1",
doi = "10.1124/dmd.108.024166",
language = "English (US)",
volume = "37",
pages = "170--177",
journal = "Drug Metabolism and Disposition",
issn = "0090-9556",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "1",

}

TY - JOUR

T1 - Quantitation of human cytochrome P450 2D6 protein with immunoblot and mass spectrometry analysis

AU - Yu, Aiming

AU - Qu, Jun

AU - Felmlee, Melanie A.

AU - Cao, Jin

AU - Jiang, Xi Ling

PY - 2009/1

Y1 - 2009/1

N2 - Accurate quantification of cytochrome P450 (P450) protein contents is essential for reliable assessment of drug safety, including the prediction of in vivo clearance from in vitro metabolism data, which may be hampered by the use of uncharacterized standards and existence of unknown allelic isozymes. Therefore, this study aimed to delineate the variability in absolute quantification of polymorphic CYP2D6 drug-metabolizing enzyme and compare immunoblot and nano liquid chromatography coupled to mass spectrometry (nano-LC/MS) methods in identification and relative quantification of CYP2D6.1 and CYP2D6.2 allelic isozymes. Holoprotein content of in-house purified CYP2D6 isozymes was determined according to carbon monoxide difference spectrum, and total protein was quantified with bicinchoninic acid protein assay. Holoprotein/total CYP2D6 protein ratio was markedly higher for purified CYP2D6.1 (71.0%) than that calculated for CYP2D6.1 Supersomes (35.5%), resulting in distinct linear calibration range (0.05-0.50 versus 0.025-0.25 pmol) that was determined by densitometric analysis of immunoblot bands. Likewise, purified CYP2D6.2 and CYP2D6.10 and the CYP2D6.10 Supersomes all showed different holoprotein/total CYP2D6 protein ratios and distinct immunoblot linear calibration ranges. In contrast to immunoblot, nano-LC/MS readily distinguished CYP2D6.2 (R296C and S486T) from CYP2D6.1 by isoformspecific proteolytic peptides that contain the altered amino acid residues. In addition, relative quantitation of the two allelic isozymes was successfully achieved with label-free protein quantification, consistent with the nominated ratio. Because immunoblot and nano-LC/MS analyses measure total P450 protein (holoprotein and apoprotein) in a sample, complete understanding of holoprotein and apoprotein contents in P450 standards is desired toward reliable quantification. Our data also suggest that nano-LC/MS not only facilitates P450 quantitation but also provides genotypic information.

AB - Accurate quantification of cytochrome P450 (P450) protein contents is essential for reliable assessment of drug safety, including the prediction of in vivo clearance from in vitro metabolism data, which may be hampered by the use of uncharacterized standards and existence of unknown allelic isozymes. Therefore, this study aimed to delineate the variability in absolute quantification of polymorphic CYP2D6 drug-metabolizing enzyme and compare immunoblot and nano liquid chromatography coupled to mass spectrometry (nano-LC/MS) methods in identification and relative quantification of CYP2D6.1 and CYP2D6.2 allelic isozymes. Holoprotein content of in-house purified CYP2D6 isozymes was determined according to carbon monoxide difference spectrum, and total protein was quantified with bicinchoninic acid protein assay. Holoprotein/total CYP2D6 protein ratio was markedly higher for purified CYP2D6.1 (71.0%) than that calculated for CYP2D6.1 Supersomes (35.5%), resulting in distinct linear calibration range (0.05-0.50 versus 0.025-0.25 pmol) that was determined by densitometric analysis of immunoblot bands. Likewise, purified CYP2D6.2 and CYP2D6.10 and the CYP2D6.10 Supersomes all showed different holoprotein/total CYP2D6 protein ratios and distinct immunoblot linear calibration ranges. In contrast to immunoblot, nano-LC/MS readily distinguished CYP2D6.2 (R296C and S486T) from CYP2D6.1 by isoformspecific proteolytic peptides that contain the altered amino acid residues. In addition, relative quantitation of the two allelic isozymes was successfully achieved with label-free protein quantification, consistent with the nominated ratio. Because immunoblot and nano-LC/MS analyses measure total P450 protein (holoprotein and apoprotein) in a sample, complete understanding of holoprotein and apoprotein contents in P450 standards is desired toward reliable quantification. Our data also suggest that nano-LC/MS not only facilitates P450 quantitation but also provides genotypic information.

UR - http://www.scopus.com/inward/record.url?scp=58149468088&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=58149468088&partnerID=8YFLogxK

U2 - 10.1124/dmd.108.024166

DO - 10.1124/dmd.108.024166

M3 - Article

C2 - 18832475

AN - SCOPUS:58149468088

VL - 37

SP - 170

EP - 177

JO - Drug Metabolism and Disposition

JF - Drug Metabolism and Disposition

SN - 0090-9556

IS - 1

ER -