TY - JOUR
T1 - Purification of the alpha 2-adrenergic receptor from porcine brain using a yohimbine-agarose affinity matrix.
AU - Repaske, M. G.
AU - Nunnari, J. M.
AU - Limbird, L. E.
PY - 1987/9/5
Y1 - 1987/9/5
N2 - A procedure has been developed for purification of the porcine brain alpha 2-adrenergic receptor to homogeneity. alpha 2-Adrenergic receptors were solubilized from porcine brain particulate preparations using sequential extraction into sodium cholate- and digitonin-containing buffers. The alpha 2-adrenergic receptors in the digitonin extract were identified using the alpha 2-adrenergic selective antagonist, [3H]yohimbine, and demonstrated the same specificity for interaction with adrenergic ligands as did the receptors in particulate preparations. Extraction into digitonin-containing buffers eliminated the modulation of receptor-agonist interactions by guanine nucleotides, but not by monovalent cations. A novel affinity resin, yohimbine-agarose, was synthesized and used for purification of alpha 2-adrenergic receptors. Using two sequential yohimbine-agarose affinity chromatography steps, digitonin-solubilized alpha 2-adrenergic receptors from porcine brain cortex were purified to homogeneity as assessed by radioiodination and silver stain analysis of these preparations on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified alpha 2-adrenergic receptor has an approximate Mr = 65,000, as determined by photolabeling of the adrenergic ligand-binding subunit. The yohimbine-agarose affinity resin should be useful for purifying quantities of receptor sufficient for studies of receptor structure and function.
AB - A procedure has been developed for purification of the porcine brain alpha 2-adrenergic receptor to homogeneity. alpha 2-Adrenergic receptors were solubilized from porcine brain particulate preparations using sequential extraction into sodium cholate- and digitonin-containing buffers. The alpha 2-adrenergic receptors in the digitonin extract were identified using the alpha 2-adrenergic selective antagonist, [3H]yohimbine, and demonstrated the same specificity for interaction with adrenergic ligands as did the receptors in particulate preparations. Extraction into digitonin-containing buffers eliminated the modulation of receptor-agonist interactions by guanine nucleotides, but not by monovalent cations. A novel affinity resin, yohimbine-agarose, was synthesized and used for purification of alpha 2-adrenergic receptors. Using two sequential yohimbine-agarose affinity chromatography steps, digitonin-solubilized alpha 2-adrenergic receptors from porcine brain cortex were purified to homogeneity as assessed by radioiodination and silver stain analysis of these preparations on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified alpha 2-adrenergic receptor has an approximate Mr = 65,000, as determined by photolabeling of the adrenergic ligand-binding subunit. The yohimbine-agarose affinity resin should be useful for purifying quantities of receptor sufficient for studies of receptor structure and function.
UR - http://www.scopus.com/inward/record.url?scp=0023645453&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023645453&partnerID=8YFLogxK
M3 - Article
C2 - 3040741
AN - SCOPUS:0023645453
VL - 262
SP - 12381
EP - 12386
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 25
ER -