Purification of microsomal epoxide hydrolase from liver of rhesus monkey: Partial separation of cis- and trans-stibene oxide hydrolase

David E. Moody, Bruce D. Hammock

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Solubilized rhesus monkey liver microsomes were used as the starting material for the purification of epoxide (cis-stilbene oxide) hydrolase. Successive chromatography over DEAE-Sephacel followed by CM-cellulose resulted in two peaks of activity, CM A and CM B. Passage of these two eluates over separate hydroxyapatite columns resulted in two peaks of activity from CM A, HA A1, and HA A2, and one peak from CM B and HA B, with respective recoveries of 1, 7, and 0.2% of cis-stilbene oxide hydrolase activities. A similar recovery was found for benzo[a]pyrene-4,5-oxide hydrolase, while trans-stilbene oxide hydrolase activity coeluted only in HA A2. Fraction HA A1 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblots of the three eluates and solubilized microsomes incubated with anti-HA A1 demonstrated a single band at 49 kDa in each fraction. The three eluates were differentially affected by the inhibitors of epoxide hydrolase, trichloropropene oxide and 4-phenylchalcone oxide, and addition of Lubrol PX and phospholipid. Immunoprecipitation of HA A2 resulted in coprecipitation of cis- and trans-stilbene oxide hydrolase activity. Upon immunoprecipitation of solubilized microsomes, all the cis-stilbene oxide and benzo[a]pyrene-4,5-oxide, but only 50-60% of trans-stilbene oxide hydrolase activity was precipitated. These studies support findings with other species that (i) an immunochemically distinct cytosolic-like epoxide hydrolase exists in microsomes, and (ii) microsomal epoxide hydrolase activity can be separated during ion-exchange chromatography giving proteins with similar molecular weights and immunochemical cross-reactivity. The precipitation of cis- and trans-stilbene oxide hydrolase activity in eluate HA A2 provides convincing evidence that these isozymes are not structurally identical.

Original languageEnglish (US)
Pages (from-to)156-166
Number of pages11
JournalArchives of Biochemistry and Biophysics
Volume258
Issue number1
DOIs
StatePublished - 1987

Fingerprint

Epoxide Hydrolases
Hydrolases
Macaca mulatta
Liver
Oxides
Purification
varespladib methyl
Microsomes
Chromatography
Immunoprecipitation
Trichloroepoxypropane
Recovery
Epoxy Compounds
Ion Exchange Chromatography
Liver Microsomes
Durapatite
Coprecipitation
Electrophoresis
Cellulose
Sodium Dodecyl Sulfate

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Molecular Biology

Cite this

Purification of microsomal epoxide hydrolase from liver of rhesus monkey : Partial separation of cis- and trans-stibene oxide hydrolase. / Moody, David E.; Hammock, Bruce D.

In: Archives of Biochemistry and Biophysics, Vol. 258, No. 1, 1987, p. 156-166.

Research output: Contribution to journalArticle

@article{734f6c3ddf5e4cbf94640e75d1849ef7,
title = "Purification of microsomal epoxide hydrolase from liver of rhesus monkey: Partial separation of cis- and trans-stibene oxide hydrolase",
abstract = "Solubilized rhesus monkey liver microsomes were used as the starting material for the purification of epoxide (cis-stilbene oxide) hydrolase. Successive chromatography over DEAE-Sephacel followed by CM-cellulose resulted in two peaks of activity, CM A and CM B. Passage of these two eluates over separate hydroxyapatite columns resulted in two peaks of activity from CM A, HA A1, and HA A2, and one peak from CM B and HA B, with respective recoveries of 1, 7, and 0.2{\%} of cis-stilbene oxide hydrolase activities. A similar recovery was found for benzo[a]pyrene-4,5-oxide hydrolase, while trans-stilbene oxide hydrolase activity coeluted only in HA A2. Fraction HA A1 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblots of the three eluates and solubilized microsomes incubated with anti-HA A1 demonstrated a single band at 49 kDa in each fraction. The three eluates were differentially affected by the inhibitors of epoxide hydrolase, trichloropropene oxide and 4-phenylchalcone oxide, and addition of Lubrol PX and phospholipid. Immunoprecipitation of HA A2 resulted in coprecipitation of cis- and trans-stilbene oxide hydrolase activity. Upon immunoprecipitation of solubilized microsomes, all the cis-stilbene oxide and benzo[a]pyrene-4,5-oxide, but only 50-60{\%} of trans-stilbene oxide hydrolase activity was precipitated. These studies support findings with other species that (i) an immunochemically distinct cytosolic-like epoxide hydrolase exists in microsomes, and (ii) microsomal epoxide hydrolase activity can be separated during ion-exchange chromatography giving proteins with similar molecular weights and immunochemical cross-reactivity. The precipitation of cis- and trans-stilbene oxide hydrolase activity in eluate HA A2 provides convincing evidence that these isozymes are not structurally identical.",
author = "Moody, {David E.} and Hammock, {Bruce D.}",
year = "1987",
doi = "10.1016/0003-9861(87)90332-8",
language = "English (US)",
volume = "258",
pages = "156--166",
journal = "Archives of Biochemistry and Biophysics",
issn = "0003-9861",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - Purification of microsomal epoxide hydrolase from liver of rhesus monkey

T2 - Partial separation of cis- and trans-stibene oxide hydrolase

AU - Moody, David E.

AU - Hammock, Bruce D.

PY - 1987

Y1 - 1987

N2 - Solubilized rhesus monkey liver microsomes were used as the starting material for the purification of epoxide (cis-stilbene oxide) hydrolase. Successive chromatography over DEAE-Sephacel followed by CM-cellulose resulted in two peaks of activity, CM A and CM B. Passage of these two eluates over separate hydroxyapatite columns resulted in two peaks of activity from CM A, HA A1, and HA A2, and one peak from CM B and HA B, with respective recoveries of 1, 7, and 0.2% of cis-stilbene oxide hydrolase activities. A similar recovery was found for benzo[a]pyrene-4,5-oxide hydrolase, while trans-stilbene oxide hydrolase activity coeluted only in HA A2. Fraction HA A1 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblots of the three eluates and solubilized microsomes incubated with anti-HA A1 demonstrated a single band at 49 kDa in each fraction. The three eluates were differentially affected by the inhibitors of epoxide hydrolase, trichloropropene oxide and 4-phenylchalcone oxide, and addition of Lubrol PX and phospholipid. Immunoprecipitation of HA A2 resulted in coprecipitation of cis- and trans-stilbene oxide hydrolase activity. Upon immunoprecipitation of solubilized microsomes, all the cis-stilbene oxide and benzo[a]pyrene-4,5-oxide, but only 50-60% of trans-stilbene oxide hydrolase activity was precipitated. These studies support findings with other species that (i) an immunochemically distinct cytosolic-like epoxide hydrolase exists in microsomes, and (ii) microsomal epoxide hydrolase activity can be separated during ion-exchange chromatography giving proteins with similar molecular weights and immunochemical cross-reactivity. The precipitation of cis- and trans-stilbene oxide hydrolase activity in eluate HA A2 provides convincing evidence that these isozymes are not structurally identical.

AB - Solubilized rhesus monkey liver microsomes were used as the starting material for the purification of epoxide (cis-stilbene oxide) hydrolase. Successive chromatography over DEAE-Sephacel followed by CM-cellulose resulted in two peaks of activity, CM A and CM B. Passage of these two eluates over separate hydroxyapatite columns resulted in two peaks of activity from CM A, HA A1, and HA A2, and one peak from CM B and HA B, with respective recoveries of 1, 7, and 0.2% of cis-stilbene oxide hydrolase activities. A similar recovery was found for benzo[a]pyrene-4,5-oxide hydrolase, while trans-stilbene oxide hydrolase activity coeluted only in HA A2. Fraction HA A1 was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoblots of the three eluates and solubilized microsomes incubated with anti-HA A1 demonstrated a single band at 49 kDa in each fraction. The three eluates were differentially affected by the inhibitors of epoxide hydrolase, trichloropropene oxide and 4-phenylchalcone oxide, and addition of Lubrol PX and phospholipid. Immunoprecipitation of HA A2 resulted in coprecipitation of cis- and trans-stilbene oxide hydrolase activity. Upon immunoprecipitation of solubilized microsomes, all the cis-stilbene oxide and benzo[a]pyrene-4,5-oxide, but only 50-60% of trans-stilbene oxide hydrolase activity was precipitated. These studies support findings with other species that (i) an immunochemically distinct cytosolic-like epoxide hydrolase exists in microsomes, and (ii) microsomal epoxide hydrolase activity can be separated during ion-exchange chromatography giving proteins with similar molecular weights and immunochemical cross-reactivity. The precipitation of cis- and trans-stilbene oxide hydrolase activity in eluate HA A2 provides convincing evidence that these isozymes are not structurally identical.

UR - http://www.scopus.com/inward/record.url?scp=0023433513&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023433513&partnerID=8YFLogxK

U2 - 10.1016/0003-9861(87)90332-8

DO - 10.1016/0003-9861(87)90332-8

M3 - Article

C2 - 3310896

AN - SCOPUS:0023433513

VL - 258

SP - 156

EP - 166

JO - Archives of Biochemistry and Biophysics

JF - Archives of Biochemistry and Biophysics

SN - 0003-9861

IS - 1

ER -