Abstract
Heparan sulfate/heparin N-deacetylase/N-sulfotransferase-1 (NDST-1) is a critical enzyme involved in heparan sulfate/heparin biosynthesis. This dual-function enzyme modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan. N-sulfation is an absolute requirement for the subsequent epimerization and O-sulfation steps in heparan sulfate/heparin biosynthesis. We have expressed rat liver (r) NDST-1 in Saccharomyces cerevisiae as a soluble protein. The yeast-expressed enzyme has both N-deacetylase and N-sulfotransferase activities. N-acetyl heparosan, isolated from Escherichia coli K5 polysaccharide, de-N-sulfated heparin and completely desulfated N-acetylated heparan sulfate are all good substrates for the rNDST-1. However, N-desulfated, N-acetylated heparin is a poor substrate. The rNDST-1 was partially purified on heparin Sepharose CL-6B. Purified rNDST-1 requires Mn2+ for its enzymatic activity, can utilize PAPS regenerated in vitro by the PAPS cycle (PAP plus para-nitrophenylsulfate in the presence of arylsulfotransferase IV), and with the addition of exogenous PAPS is capable of producing 60-65% N-sulfated heparosan from E. coli K5 polysaccharide or Pasteurella multocida polysaccharide.
Original language | English (US) |
---|---|
Pages (from-to) | 1217-1228 |
Number of pages | 12 |
Journal | Glycobiology |
Volume | 14 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2004 |
Keywords
- Heparan sulfate
- K5 polysaccharide
- NDST-1
- PAPS cycle
- Yeast
ASJC Scopus subject areas
- Biochemistry