Postprandial effect to decrease soluble epoxide hydrolase activity: roles of insulin and gut microbiota

Jun Yang, Young Taek Oh, Debin Wan, Richard M. Watanabe, Bruce D. Hammock, Jang H. Youn

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Epoxides of free fatty acids (FFAs), especially epoxyeicosatrienoic acids (EETs), are lipid mediators with beneficial effects in metabolic and cardiovascular (CV) health. FFA epoxides are quickly metabolized to biologically less active diols by soluble epoxide hydrolase (sEH). Inhibition of sEH, which increases EET levels, improves glucose homeostasis and CV health and is proposed as an effective strategy for the treatment of diabetes and CV diseases. Here, we show evidence that sEH activity is profoundly reduced in postprandial states in rats; plasma levels of 17 sEH products (i.e., FFA diols), detected by targeted oxylipin analysis, all decreased after a meal. In addition, the ratios of sEH product to substrate (sEH P/S ratios), which may reflect sEH activity, decreased ~70% on average 2.5 h after a meal in rats (P<.01). To examine whether this effect was mediated by insulin action, a hyperinsulinemic–euglycemic clamp was performed for 2.5 h, and sEH P/S ratios were assessed before and after the clamp. The clamp resulted in small increases rather than decreases in sEH P/S ratios (P<.05), indicating that insulin cannot account for the postprandial decrease in sEH P/S ratios. Interestingly, in rats treated with antibiotics to deplete gut bacteria, the postprandial effect to decrease sEH P/S ratios was completely abolished, suggesting that a gut bacteria-derived factor(s) may be responsible for the effect. Further studies are warranted to identify such a factor(s) and elucidate the mechanism by which sEH activity (or sEH P/S ratio) is reduced in postprandial states.

Original languageEnglish (US)
Pages (from-to)8-14
Number of pages7
JournalJournal of Nutritional Biochemistry
StatePublished - Nov 1 2017


  • Cardiovascular disease
  • Diabetes
  • Dietary potassium
  • FFA epoxides
  • Oxylipin analysis

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Molecular Biology
  • Nutrition and Dietetics
  • Clinical Biochemistry


Dive into the research topics of 'Postprandial effect to decrease soluble epoxide hydrolase activity: roles of insulin and gut microbiota'. Together they form a unique fingerprint.

Cite this