Positioning protein molecules on surfaces: A nanoengineering approach to supramolecular chemistry

Gang-yu Liu, Nabil A. Amro

Research output: Contribution to journalArticle

162 Citations (Scopus)

Abstract

We discuss a nanoengineering approach for supramolecular chemistry and self assembly. The collective properties and biofunctionalities of molecular ensembles depend not only on individual molecular building blocks but also on organization at the molecular or nanoscopic level. Complementary to "bottom-up" approaches, which construct supramolecular ensembles by the design and synthesis of functionalized small molecular units or large molecular motifs, nanofabrication explores whether individual units, such as small molecular ligands, or large molecules, such as proteins, can be positioned with nanometer precision. The separation and local environment can be engineered to control subsequent intermolecular interactions. Feature sizes as small as 2 × 4 nm2 (32 alkanethiol molecules) are produced. Proteins may be aligned along a 10-nm-wide line or within two-dimensional islands of desired geometry. These high-resolution engineering and imaging studies provide new and molecular-level insight into supramolecular chemistry and self-assembly processes in bioscience that are otherwise unobtainable, e.g., the influence of size, separation, orientation, and local environment of reaction sites. This nanofabrication methodology also offers a new strategy in construction of two- and three-dimensional supramolecular structures for cell, virus, and bacterial adhesion, as well as biomaterial and biodevice engineering.

Original languageEnglish (US)
Pages (from-to)5165-5170
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume99
Issue number8
DOIs
StatePublished - Apr 16 2002

Fingerprint

Bacterial Adhesion
Viral Structures
Biocompatible Materials
Islands
Cell Adhesion
Proteins
Ligands

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{8d7b34d2596849cbaa98b3af01e46888,
title = "Positioning protein molecules on surfaces: A nanoengineering approach to supramolecular chemistry",
abstract = "We discuss a nanoengineering approach for supramolecular chemistry and self assembly. The collective properties and biofunctionalities of molecular ensembles depend not only on individual molecular building blocks but also on organization at the molecular or nanoscopic level. Complementary to {"}bottom-up{"} approaches, which construct supramolecular ensembles by the design and synthesis of functionalized small molecular units or large molecular motifs, nanofabrication explores whether individual units, such as small molecular ligands, or large molecules, such as proteins, can be positioned with nanometer precision. The separation and local environment can be engineered to control subsequent intermolecular interactions. Feature sizes as small as 2 × 4 nm2 (32 alkanethiol molecules) are produced. Proteins may be aligned along a 10-nm-wide line or within two-dimensional islands of desired geometry. These high-resolution engineering and imaging studies provide new and molecular-level insight into supramolecular chemistry and self-assembly processes in bioscience that are otherwise unobtainable, e.g., the influence of size, separation, orientation, and local environment of reaction sites. This nanofabrication methodology also offers a new strategy in construction of two- and three-dimensional supramolecular structures for cell, virus, and bacterial adhesion, as well as biomaterial and biodevice engineering.",
author = "Gang-yu Liu and Amro, {Nabil A.}",
year = "2002",
month = "4",
day = "16",
doi = "10.1073/pnas.072695699",
language = "English (US)",
volume = "99",
pages = "5165--5170",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "8",

}

TY - JOUR

T1 - Positioning protein molecules on surfaces

T2 - A nanoengineering approach to supramolecular chemistry

AU - Liu, Gang-yu

AU - Amro, Nabil A.

PY - 2002/4/16

Y1 - 2002/4/16

N2 - We discuss a nanoengineering approach for supramolecular chemistry and self assembly. The collective properties and biofunctionalities of molecular ensembles depend not only on individual molecular building blocks but also on organization at the molecular or nanoscopic level. Complementary to "bottom-up" approaches, which construct supramolecular ensembles by the design and synthesis of functionalized small molecular units or large molecular motifs, nanofabrication explores whether individual units, such as small molecular ligands, or large molecules, such as proteins, can be positioned with nanometer precision. The separation and local environment can be engineered to control subsequent intermolecular interactions. Feature sizes as small as 2 × 4 nm2 (32 alkanethiol molecules) are produced. Proteins may be aligned along a 10-nm-wide line or within two-dimensional islands of desired geometry. These high-resolution engineering and imaging studies provide new and molecular-level insight into supramolecular chemistry and self-assembly processes in bioscience that are otherwise unobtainable, e.g., the influence of size, separation, orientation, and local environment of reaction sites. This nanofabrication methodology also offers a new strategy in construction of two- and three-dimensional supramolecular structures for cell, virus, and bacterial adhesion, as well as biomaterial and biodevice engineering.

AB - We discuss a nanoengineering approach for supramolecular chemistry and self assembly. The collective properties and biofunctionalities of molecular ensembles depend not only on individual molecular building blocks but also on organization at the molecular or nanoscopic level. Complementary to "bottom-up" approaches, which construct supramolecular ensembles by the design and synthesis of functionalized small molecular units or large molecular motifs, nanofabrication explores whether individual units, such as small molecular ligands, or large molecules, such as proteins, can be positioned with nanometer precision. The separation and local environment can be engineered to control subsequent intermolecular interactions. Feature sizes as small as 2 × 4 nm2 (32 alkanethiol molecules) are produced. Proteins may be aligned along a 10-nm-wide line or within two-dimensional islands of desired geometry. These high-resolution engineering and imaging studies provide new and molecular-level insight into supramolecular chemistry and self-assembly processes in bioscience that are otherwise unobtainable, e.g., the influence of size, separation, orientation, and local environment of reaction sites. This nanofabrication methodology also offers a new strategy in construction of two- and three-dimensional supramolecular structures for cell, virus, and bacterial adhesion, as well as biomaterial and biodevice engineering.

UR - http://www.scopus.com/inward/record.url?scp=0037117769&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037117769&partnerID=8YFLogxK

U2 - 10.1073/pnas.072695699

DO - 10.1073/pnas.072695699

M3 - Article

C2 - 11959965

AN - SCOPUS:0037117769

VL - 99

SP - 5165

EP - 5170

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 8

ER -