Poikilocytosis in rabbits: Prevalence, type, and ssociation with disease

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Rabbits (Oryctolagus cuniculus) are a popular companion animal, food animal, and animal model of human disease. Abnormal red cell shapes (poikilocytes) have been observed in rabbits, but their significance is unknown. The objective of this study was to investigate the prevalence and type of poikilocytosis in pet rabbits and its association with physiologic factors, clinical disease, and laboratory abnormalities. We retrospectively analyzed blood smears from 482 rabbits presented to the University of California-Davis Veterinary Medical Teaching Hospital from 1990 to 2010. Number and type of poikilocytes per 2000 red blood cells (RBCs) were counted and expressed as a percentage. Acanthocytes (>3% of RBCs) were found in 150/482 (31%) rabbits and echinocytes (>3% of RBCs) were found in 127/482 (27%) of rabbits, both healthy and diseased. Thirty-three of 482 (7%) rabbits had >30% acanthocytes and echinocytes combined. Mild to moderate (>0.5% of RBCs) fragmented red cells (schistocytes, microcytes, keratocytes, spherocytes) were found in 25/403 (6%) diseased and 0/79 (0%) healthy rabbits (P = 0.0240). Fragmentation and acanthocytosis were more severe in rabbits with inflammatory disease and malignant neoplasia compared with healthy rabbits (P<0.01). The % fragmented cells correlated with % polychromasia, RDW, and heterophil, monocyte, globulins, and fibrinogen concentrations (P<0.05). Echinocytosis was significantly associated with renal failure, azotemia, and acid-base/electrolyte abnormalities (P<0.05). Serum cholesterol concentration correlated significantly with % acanthocytes (P<0.0001), % echinocytes (P = 0.0069), and % fragmented cells (P = 0.0109), but correlations were weak (Spearman ρ <0.02). These findings provide important insights into underlying pathophysiologic mechanisms that appear to affect the prevalence and type of naturally-occurring poikilocytosis in rabbits. Our findings support the need to carefully document poikilocytes in research investigations and in clinical diagnosis and to determine their diagnostic and prognostic value.

Original languageEnglish (US)
Article numbere112455
JournalPLoS One
Volume9
Issue number11
DOIs
StatePublished - Nov 17 2014

Fingerprint

Blood
rabbits
Rabbits
Animals
Cells
Acanthocytes
erythrocytes
Erythrocytes
Globulins
Pets
Fibrinogen
Electrolytes
pets
Teaching
Cholesterol
Spherocytes
cells
Abetalipoproteinemia
Acids
Azotemia

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Poikilocytosis in rabbits : Prevalence, type, and ssociation with disease. / Christopher, Mary M; Hawkins, Michelle; Burton, Andrew G.

In: PLoS One, Vol. 9, No. 11, e112455, 17.11.2014.

Research output: Contribution to journalArticle

@article{03061310a40049ae8bb3d4c4c56773b5,
title = "Poikilocytosis in rabbits: Prevalence, type, and ssociation with disease",
abstract = "Rabbits (Oryctolagus cuniculus) are a popular companion animal, food animal, and animal model of human disease. Abnormal red cell shapes (poikilocytes) have been observed in rabbits, but their significance is unknown. The objective of this study was to investigate the prevalence and type of poikilocytosis in pet rabbits and its association with physiologic factors, clinical disease, and laboratory abnormalities. We retrospectively analyzed blood smears from 482 rabbits presented to the University of California-Davis Veterinary Medical Teaching Hospital from 1990 to 2010. Number and type of poikilocytes per 2000 red blood cells (RBCs) were counted and expressed as a percentage. Acanthocytes (>3{\%} of RBCs) were found in 150/482 (31{\%}) rabbits and echinocytes (>3{\%} of RBCs) were found in 127/482 (27{\%}) of rabbits, both healthy and diseased. Thirty-three of 482 (7{\%}) rabbits had >30{\%} acanthocytes and echinocytes combined. Mild to moderate (>0.5{\%} of RBCs) fragmented red cells (schistocytes, microcytes, keratocytes, spherocytes) were found in 25/403 (6{\%}) diseased and 0/79 (0{\%}) healthy rabbits (P = 0.0240). Fragmentation and acanthocytosis were more severe in rabbits with inflammatory disease and malignant neoplasia compared with healthy rabbits (P<0.01). The {\%} fragmented cells correlated with {\%} polychromasia, RDW, and heterophil, monocyte, globulins, and fibrinogen concentrations (P<0.05). Echinocytosis was significantly associated with renal failure, azotemia, and acid-base/electrolyte abnormalities (P<0.05). Serum cholesterol concentration correlated significantly with {\%} acanthocytes (P<0.0001), {\%} echinocytes (P = 0.0069), and {\%} fragmented cells (P = 0.0109), but correlations were weak (Spearman ρ <0.02). These findings provide important insights into underlying pathophysiologic mechanisms that appear to affect the prevalence and type of naturally-occurring poikilocytosis in rabbits. Our findings support the need to carefully document poikilocytes in research investigations and in clinical diagnosis and to determine their diagnostic and prognostic value.",
author = "Christopher, {Mary M} and Michelle Hawkins and Burton, {Andrew G.}",
year = "2014",
month = "11",
day = "17",
doi = "10.1371/journal.pone.0112455",
language = "English (US)",
volume = "9",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "11",

}

TY - JOUR

T1 - Poikilocytosis in rabbits

T2 - Prevalence, type, and ssociation with disease

AU - Christopher, Mary M

AU - Hawkins, Michelle

AU - Burton, Andrew G.

PY - 2014/11/17

Y1 - 2014/11/17

N2 - Rabbits (Oryctolagus cuniculus) are a popular companion animal, food animal, and animal model of human disease. Abnormal red cell shapes (poikilocytes) have been observed in rabbits, but their significance is unknown. The objective of this study was to investigate the prevalence and type of poikilocytosis in pet rabbits and its association with physiologic factors, clinical disease, and laboratory abnormalities. We retrospectively analyzed blood smears from 482 rabbits presented to the University of California-Davis Veterinary Medical Teaching Hospital from 1990 to 2010. Number and type of poikilocytes per 2000 red blood cells (RBCs) were counted and expressed as a percentage. Acanthocytes (>3% of RBCs) were found in 150/482 (31%) rabbits and echinocytes (>3% of RBCs) were found in 127/482 (27%) of rabbits, both healthy and diseased. Thirty-three of 482 (7%) rabbits had >30% acanthocytes and echinocytes combined. Mild to moderate (>0.5% of RBCs) fragmented red cells (schistocytes, microcytes, keratocytes, spherocytes) were found in 25/403 (6%) diseased and 0/79 (0%) healthy rabbits (P = 0.0240). Fragmentation and acanthocytosis were more severe in rabbits with inflammatory disease and malignant neoplasia compared with healthy rabbits (P<0.01). The % fragmented cells correlated with % polychromasia, RDW, and heterophil, monocyte, globulins, and fibrinogen concentrations (P<0.05). Echinocytosis was significantly associated with renal failure, azotemia, and acid-base/electrolyte abnormalities (P<0.05). Serum cholesterol concentration correlated significantly with % acanthocytes (P<0.0001), % echinocytes (P = 0.0069), and % fragmented cells (P = 0.0109), but correlations were weak (Spearman ρ <0.02). These findings provide important insights into underlying pathophysiologic mechanisms that appear to affect the prevalence and type of naturally-occurring poikilocytosis in rabbits. Our findings support the need to carefully document poikilocytes in research investigations and in clinical diagnosis and to determine their diagnostic and prognostic value.

AB - Rabbits (Oryctolagus cuniculus) are a popular companion animal, food animal, and animal model of human disease. Abnormal red cell shapes (poikilocytes) have been observed in rabbits, but their significance is unknown. The objective of this study was to investigate the prevalence and type of poikilocytosis in pet rabbits and its association with physiologic factors, clinical disease, and laboratory abnormalities. We retrospectively analyzed blood smears from 482 rabbits presented to the University of California-Davis Veterinary Medical Teaching Hospital from 1990 to 2010. Number and type of poikilocytes per 2000 red blood cells (RBCs) were counted and expressed as a percentage. Acanthocytes (>3% of RBCs) were found in 150/482 (31%) rabbits and echinocytes (>3% of RBCs) were found in 127/482 (27%) of rabbits, both healthy and diseased. Thirty-three of 482 (7%) rabbits had >30% acanthocytes and echinocytes combined. Mild to moderate (>0.5% of RBCs) fragmented red cells (schistocytes, microcytes, keratocytes, spherocytes) were found in 25/403 (6%) diseased and 0/79 (0%) healthy rabbits (P = 0.0240). Fragmentation and acanthocytosis were more severe in rabbits with inflammatory disease and malignant neoplasia compared with healthy rabbits (P<0.01). The % fragmented cells correlated with % polychromasia, RDW, and heterophil, monocyte, globulins, and fibrinogen concentrations (P<0.05). Echinocytosis was significantly associated with renal failure, azotemia, and acid-base/electrolyte abnormalities (P<0.05). Serum cholesterol concentration correlated significantly with % acanthocytes (P<0.0001), % echinocytes (P = 0.0069), and % fragmented cells (P = 0.0109), but correlations were weak (Spearman ρ <0.02). These findings provide important insights into underlying pathophysiologic mechanisms that appear to affect the prevalence and type of naturally-occurring poikilocytosis in rabbits. Our findings support the need to carefully document poikilocytes in research investigations and in clinical diagnosis and to determine their diagnostic and prognostic value.

UR - http://www.scopus.com/inward/record.url?scp=84912129700&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84912129700&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0112455

DO - 10.1371/journal.pone.0112455

M3 - Article

C2 - 25402479

AN - SCOPUS:84912129700

VL - 9

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 11

M1 - e112455

ER -