Abstract
Homocysteine S-methyltransferases (HMTs) are widely distributed enzymes that convert homocysteine (Hcy) into methionine (Met) using either S-adenosylmethionine (AdoMet) or the plant secondary product S-methylmethionine (SMM) as methyl donor. AdoMet is chirally and covalently unstable, with racemization of natural (S,S)-AdoMet yielding biologically inactive (R,S)- AdoMet and depurination yielding S-ribosylmethionine (SribosylMet). The apparently futile AdoMet-dependent reaction of HMTs was assigned a role in repairing chiral damage to AdoMet in yeast: yeast HMTs strongly prefer (R,S)- to (S,S)-AdoMet and thereby limit (R,S)-AdoMet build-up [Vinci and Clarke (2010) J. Biol. Chem. 285, 20526-20531]. In the present study, we show that bacterial, plant, protistan and animal HMTs likewise prefer (R,S)- over (S,S)-AdoMet, that their ability to use SMM varies greatly and is associated with the likely prevalence of SMM in the environment of the organism and that most HMTs cannot use S-ribosylMet. Taken with results from comparative genomic and phylogenetic analyses, these data imply that (i) the ancestral function of HMTs was (R,S)-AdoMet repair, (ii) the efficient use of SMM reflects the repurposing of HMTs after the evolutionary advent of plants introduced SMM into the biosphere, (iii) this plant-driven repurposing was facile and occurred independently in various lineages, and (iv) HMTs have little importance in SribosylMet metabolism.
Original language | English (US) |
---|---|
Pages (from-to) | 279-286 |
Number of pages | 8 |
Journal | Biochemical Journal |
Volume | 463 |
DOIs | |
State | Published - Oct 15 2014 |
Keywords
- Metabolite damage
- Methyl metabolism
- Neofunctionalization
- S-methylmethionine
- Vitamin U
ASJC Scopus subject areas
- Biochemistry
- Cell Biology
- Molecular Biology
- Medicine(all)