Abstract
Analysis of meiotic recombination by functional genomic approaches reveals prominent spatial and functional interactions among diverse organizational determinants. Recombination occurs between chromatin loop sequences; however, these sequences are spatially tethered to underlying chromosome axes via their recombinosomes. Meiotic chromosomal protein, Red1, localizes to chromosome axes; however, Red1 loading is modulated by R/G-bands isochores and thus by bulk chromatin state. Recombination is also modulated by isochore determinants: R-bands differentially favor double-strand break (DSB) formation but disfavor subsequent loading of meiotic RecA homolog, Dmc1. Red1 promotes DSB formation in both R- and G-bands and then promotes Dmc1 loading, specifically counteracting disfavoring R-band effects. These complexities are discussed in the context of chiasma formation as a series of coordinated local changes at the DNA and chromosome-axis levels.
Original language | English (US) |
---|---|
Pages (from-to) | 791-802 |
Number of pages | 12 |
Journal | Cell |
Volume | 111 |
Issue number | 6 |
DOIs | |
State | Published - Dec 13 2002 |
ASJC Scopus subject areas
- Cell Biology
- Molecular Biology