Phospholemman-mediated activation of Na/K-ATPase limits [Na]i and inotropic state during β-adrenergic stimulation in mouse ventricular myocytes

Sanda Despa, Amy L. Tucker, Donald M Bers

Research output: Contribution to journalArticle

54 Citations (Scopus)

Abstract

BACKGROUND - Cardiac Na/K-ATPase (NKA) regulates intracellular Na ([Na]i), which in turn affects intracellular Ca and thus contractility via Na/Ca exchange. Recent evidence shows that phosphorylation of the NKA-associated small transmembrane protein phospholemman (PLM) mediates β-adrenergic-induced NKA stimulation. METHODS AND RESULTS - Here, we tested whether PLM phosphorylation during β-adrenergic activation limits the rise in [Na]i, Ca transient amplitude, and triggered arrhythmias in mouse ventricular myocytes. In myocytes from wild-type (WT) mice, [Na]i increased on field stimulation at 2 Hz from 11.1±1.8 mmol/L to a plateau of 15.2±1.5 mmol/L. Isoproterenol induced a decrease in [Na]i to 12.0±1.2 mmol/L. In PLM knockout (PLM-KO) mice in which β-adrenergic stimulation does not activate NKA, [Na]i also increased at 2 Hz (from 10.4±1.2 to 17.0±1.5 mmol/L) but was unaltered by isoproterenol. The PLM-mediated decrease in [Na]i in WT mice could limit the isoproterenol-induced inotropic state. Indeed, the isoproterenol-induced increase in the amplitude of Ca transients was significantly smaller in the WT mice (5.2±0.4- versus 7.1±0.5-fold in PLM-KO mice). This also was the case for the sarcoplasmic reticulum Ca content, which increased by 1.27±0.09-fold in WT mice versus 1.53±0.09-fold in PLM-KO mice. The higher sarcoplasmic reticulum Ca content in PLM-KO versus WT mice was associated with an increased propensity for spontaneous Ca transients and contractions in PLM-KO mice. CONCLUSIONS - These data suggest that PLM phosphorylation and NKA stimulation are an integral part of the sympathetic fight-or-flight response, tempering the rise in [Na]i and cellular Ca loading and perhaps limiting Ca overload-induced arrhythmias.

Original languageEnglish (US)
Pages (from-to)1849-1855
Number of pages7
JournalCirculation
Volume117
Issue number14
DOIs
StatePublished - Apr 2008

Fingerprint

Adrenergic Agents
Muscle Cells
Adenosine Triphosphatases
Isoproterenol
Phosphorylation
Sarcoplasmic Reticulum
Cardiac Arrhythmias
phospholemman
Knockout Mice
sodium-translocating ATPase

Keywords

  • Arrhythmia
  • Calcium
  • Sodium

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine

Cite this

Phospholemman-mediated activation of Na/K-ATPase limits [Na]i and inotropic state during β-adrenergic stimulation in mouse ventricular myocytes. / Despa, Sanda; Tucker, Amy L.; Bers, Donald M.

In: Circulation, Vol. 117, No. 14, 04.2008, p. 1849-1855.

Research output: Contribution to journalArticle

@article{2289370a60d34b538d2b076d1ece7a44,
title = "Phospholemman-mediated activation of Na/K-ATPase limits [Na]i and inotropic state during β-adrenergic stimulation in mouse ventricular myocytes",
abstract = "BACKGROUND - Cardiac Na/K-ATPase (NKA) regulates intracellular Na ([Na]i), which in turn affects intracellular Ca and thus contractility via Na/Ca exchange. Recent evidence shows that phosphorylation of the NKA-associated small transmembrane protein phospholemman (PLM) mediates β-adrenergic-induced NKA stimulation. METHODS AND RESULTS - Here, we tested whether PLM phosphorylation during β-adrenergic activation limits the rise in [Na]i, Ca transient amplitude, and triggered arrhythmias in mouse ventricular myocytes. In myocytes from wild-type (WT) mice, [Na]i increased on field stimulation at 2 Hz from 11.1±1.8 mmol/L to a plateau of 15.2±1.5 mmol/L. Isoproterenol induced a decrease in [Na]i to 12.0±1.2 mmol/L. In PLM knockout (PLM-KO) mice in which β-adrenergic stimulation does not activate NKA, [Na]i also increased at 2 Hz (from 10.4±1.2 to 17.0±1.5 mmol/L) but was unaltered by isoproterenol. The PLM-mediated decrease in [Na]i in WT mice could limit the isoproterenol-induced inotropic state. Indeed, the isoproterenol-induced increase in the amplitude of Ca transients was significantly smaller in the WT mice (5.2±0.4- versus 7.1±0.5-fold in PLM-KO mice). This also was the case for the sarcoplasmic reticulum Ca content, which increased by 1.27±0.09-fold in WT mice versus 1.53±0.09-fold in PLM-KO mice. The higher sarcoplasmic reticulum Ca content in PLM-KO versus WT mice was associated with an increased propensity for spontaneous Ca transients and contractions in PLM-KO mice. CONCLUSIONS - These data suggest that PLM phosphorylation and NKA stimulation are an integral part of the sympathetic fight-or-flight response, tempering the rise in [Na]i and cellular Ca loading and perhaps limiting Ca overload-induced arrhythmias.",
keywords = "Arrhythmia, Calcium, Sodium",
author = "Sanda Despa and Tucker, {Amy L.} and Bers, {Donald M}",
year = "2008",
month = "4",
doi = "10.1161/CIRCULATIONAHA.107.754051",
language = "English (US)",
volume = "117",
pages = "1849--1855",
journal = "Circulation",
issn = "0009-7322",
publisher = "Lippincott Williams and Wilkins",
number = "14",

}

TY - JOUR

T1 - Phospholemman-mediated activation of Na/K-ATPase limits [Na]i and inotropic state during β-adrenergic stimulation in mouse ventricular myocytes

AU - Despa, Sanda

AU - Tucker, Amy L.

AU - Bers, Donald M

PY - 2008/4

Y1 - 2008/4

N2 - BACKGROUND - Cardiac Na/K-ATPase (NKA) regulates intracellular Na ([Na]i), which in turn affects intracellular Ca and thus contractility via Na/Ca exchange. Recent evidence shows that phosphorylation of the NKA-associated small transmembrane protein phospholemman (PLM) mediates β-adrenergic-induced NKA stimulation. METHODS AND RESULTS - Here, we tested whether PLM phosphorylation during β-adrenergic activation limits the rise in [Na]i, Ca transient amplitude, and triggered arrhythmias in mouse ventricular myocytes. In myocytes from wild-type (WT) mice, [Na]i increased on field stimulation at 2 Hz from 11.1±1.8 mmol/L to a plateau of 15.2±1.5 mmol/L. Isoproterenol induced a decrease in [Na]i to 12.0±1.2 mmol/L. In PLM knockout (PLM-KO) mice in which β-adrenergic stimulation does not activate NKA, [Na]i also increased at 2 Hz (from 10.4±1.2 to 17.0±1.5 mmol/L) but was unaltered by isoproterenol. The PLM-mediated decrease in [Na]i in WT mice could limit the isoproterenol-induced inotropic state. Indeed, the isoproterenol-induced increase in the amplitude of Ca transients was significantly smaller in the WT mice (5.2±0.4- versus 7.1±0.5-fold in PLM-KO mice). This also was the case for the sarcoplasmic reticulum Ca content, which increased by 1.27±0.09-fold in WT mice versus 1.53±0.09-fold in PLM-KO mice. The higher sarcoplasmic reticulum Ca content in PLM-KO versus WT mice was associated with an increased propensity for spontaneous Ca transients and contractions in PLM-KO mice. CONCLUSIONS - These data suggest that PLM phosphorylation and NKA stimulation are an integral part of the sympathetic fight-or-flight response, tempering the rise in [Na]i and cellular Ca loading and perhaps limiting Ca overload-induced arrhythmias.

AB - BACKGROUND - Cardiac Na/K-ATPase (NKA) regulates intracellular Na ([Na]i), which in turn affects intracellular Ca and thus contractility via Na/Ca exchange. Recent evidence shows that phosphorylation of the NKA-associated small transmembrane protein phospholemman (PLM) mediates β-adrenergic-induced NKA stimulation. METHODS AND RESULTS - Here, we tested whether PLM phosphorylation during β-adrenergic activation limits the rise in [Na]i, Ca transient amplitude, and triggered arrhythmias in mouse ventricular myocytes. In myocytes from wild-type (WT) mice, [Na]i increased on field stimulation at 2 Hz from 11.1±1.8 mmol/L to a plateau of 15.2±1.5 mmol/L. Isoproterenol induced a decrease in [Na]i to 12.0±1.2 mmol/L. In PLM knockout (PLM-KO) mice in which β-adrenergic stimulation does not activate NKA, [Na]i also increased at 2 Hz (from 10.4±1.2 to 17.0±1.5 mmol/L) but was unaltered by isoproterenol. The PLM-mediated decrease in [Na]i in WT mice could limit the isoproterenol-induced inotropic state. Indeed, the isoproterenol-induced increase in the amplitude of Ca transients was significantly smaller in the WT mice (5.2±0.4- versus 7.1±0.5-fold in PLM-KO mice). This also was the case for the sarcoplasmic reticulum Ca content, which increased by 1.27±0.09-fold in WT mice versus 1.53±0.09-fold in PLM-KO mice. The higher sarcoplasmic reticulum Ca content in PLM-KO versus WT mice was associated with an increased propensity for spontaneous Ca transients and contractions in PLM-KO mice. CONCLUSIONS - These data suggest that PLM phosphorylation and NKA stimulation are an integral part of the sympathetic fight-or-flight response, tempering the rise in [Na]i and cellular Ca loading and perhaps limiting Ca overload-induced arrhythmias.

KW - Arrhythmia

KW - Calcium

KW - Sodium

UR - http://www.scopus.com/inward/record.url?scp=41949138012&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=41949138012&partnerID=8YFLogxK

U2 - 10.1161/CIRCULATIONAHA.107.754051

DO - 10.1161/CIRCULATIONAHA.107.754051

M3 - Article

VL - 117

SP - 1849

EP - 1855

JO - Circulation

JF - Circulation

SN - 0009-7322

IS - 14

ER -