Pharmacokinetics of a low dose and FDA-labeled dose of diclazuril administered orally as a pelleted topdressing in adult horses

L. Hunyadi, M. G. Papich, Nicola Pusterla

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

The purpose of this study was to determine the pharmacokinetics of the FDA-approved labeled dose of diclazuril and compare it to a low dose in plasma and CSF in adult horses. During each research period, six healthy adult horses received 0.5 mg/kg of 1.56% diclazuril pellets (Protazil<sup>TM</sup>, Merck Animal Health) compared to the approved labeled dose of 1 mg/kg orally once in two separate phases. A dose of 0.5 mg/kg was calculated to each horse's weight. Blood was then collected immediately before diclazuril administration and then at regular intervals up to a 168 h. After the last blood collection following the single dose at hour 168, a once daily oral dose was administered for the next 10 days to ensure the drug's concentration reached steady-state. To determine the CSF concentration at steady-state, CSF samples were collected after the 9th oral dose. Blood was then collected after the 10th dose and then at regular intervals up to 168 h. A washout period of 4 weeks was allowed before repeating this protocol for the FDA-labeled dose at 1 mg/kg. Plasma and CSF samples were analyzed by high-pressure liquid chromatography. A one-compartment pharmacokinetic model with first-order oral absorption was fitted to the single administration data. Steady-state pharmacokinetics was performed using noncompartmental analysis for steady-state analysis. The mean (standard deviation) concentration of diclazuril in CSF following the low dose was 26 ng/mL (5 ng/mL), while CSF in the FDA-labeled dose was 25 ng/mL (4 ng/mL), P = 0.3750. Substantial accumulation in plasma occurred at steady-state after the 10th dose for both doses. The results of this study show that diclazuril pellets given at the approved label dose and a lower dose both produce similar plasma drug concentrations at steady-state and attain plasma and CSF concentrations known to inhibit Sarcocystis neurona in cell culture.

Original languageEnglish (US)
Pages (from-to)243-248
Number of pages6
JournalJournal of Veterinary Pharmacology and Therapeutics
Volume38
Issue number3
DOIs
StatePublished - Jun 1 2015

Fingerprint

diclazuril
top dressings
pharmacokinetics
Horses
Pharmacokinetics
horses
dosage
Sarcocystis
Pharmaceutical Preparations
mouth
Cell Culture Techniques
High Pressure Liquid Chromatography
Weights and Measures

ASJC Scopus subject areas

  • Pharmacology
  • veterinary(all)

Cite this

@article{0c845a5ff9c2459a99d6b5bcf634b4f5,
title = "Pharmacokinetics of a low dose and FDA-labeled dose of diclazuril administered orally as a pelleted topdressing in adult horses",
abstract = "The purpose of this study was to determine the pharmacokinetics of the FDA-approved labeled dose of diclazuril and compare it to a low dose in plasma and CSF in adult horses. During each research period, six healthy adult horses received 0.5 mg/kg of 1.56{\%} diclazuril pellets (ProtazilTM, Merck Animal Health) compared to the approved labeled dose of 1 mg/kg orally once in two separate phases. A dose of 0.5 mg/kg was calculated to each horse's weight. Blood was then collected immediately before diclazuril administration and then at regular intervals up to a 168 h. After the last blood collection following the single dose at hour 168, a once daily oral dose was administered for the next 10 days to ensure the drug's concentration reached steady-state. To determine the CSF concentration at steady-state, CSF samples were collected after the 9th oral dose. Blood was then collected after the 10th dose and then at regular intervals up to 168 h. A washout period of 4 weeks was allowed before repeating this protocol for the FDA-labeled dose at 1 mg/kg. Plasma and CSF samples were analyzed by high-pressure liquid chromatography. A one-compartment pharmacokinetic model with first-order oral absorption was fitted to the single administration data. Steady-state pharmacokinetics was performed using noncompartmental analysis for steady-state analysis. The mean (standard deviation) concentration of diclazuril in CSF following the low dose was 26 ng/mL (5 ng/mL), while CSF in the FDA-labeled dose was 25 ng/mL (4 ng/mL), P = 0.3750. Substantial accumulation in plasma occurred at steady-state after the 10th dose for both doses. The results of this study show that diclazuril pellets given at the approved label dose and a lower dose both produce similar plasma drug concentrations at steady-state and attain plasma and CSF concentrations known to inhibit Sarcocystis neurona in cell culture.",
author = "L. Hunyadi and Papich, {M. G.} and Nicola Pusterla",
year = "2015",
month = "6",
day = "1",
doi = "10.1111/jvp.12176",
language = "English (US)",
volume = "38",
pages = "243--248",
journal = "Journal of Veterinary Pharmacology and Therapeutics",
issn = "0140-7783",
publisher = "Wiley-Blackwell",
number = "3",

}

TY - JOUR

T1 - Pharmacokinetics of a low dose and FDA-labeled dose of diclazuril administered orally as a pelleted topdressing in adult horses

AU - Hunyadi, L.

AU - Papich, M. G.

AU - Pusterla, Nicola

PY - 2015/6/1

Y1 - 2015/6/1

N2 - The purpose of this study was to determine the pharmacokinetics of the FDA-approved labeled dose of diclazuril and compare it to a low dose in plasma and CSF in adult horses. During each research period, six healthy adult horses received 0.5 mg/kg of 1.56% diclazuril pellets (ProtazilTM, Merck Animal Health) compared to the approved labeled dose of 1 mg/kg orally once in two separate phases. A dose of 0.5 mg/kg was calculated to each horse's weight. Blood was then collected immediately before diclazuril administration and then at regular intervals up to a 168 h. After the last blood collection following the single dose at hour 168, a once daily oral dose was administered for the next 10 days to ensure the drug's concentration reached steady-state. To determine the CSF concentration at steady-state, CSF samples were collected after the 9th oral dose. Blood was then collected after the 10th dose and then at regular intervals up to 168 h. A washout period of 4 weeks was allowed before repeating this protocol for the FDA-labeled dose at 1 mg/kg. Plasma and CSF samples were analyzed by high-pressure liquid chromatography. A one-compartment pharmacokinetic model with first-order oral absorption was fitted to the single administration data. Steady-state pharmacokinetics was performed using noncompartmental analysis for steady-state analysis. The mean (standard deviation) concentration of diclazuril in CSF following the low dose was 26 ng/mL (5 ng/mL), while CSF in the FDA-labeled dose was 25 ng/mL (4 ng/mL), P = 0.3750. Substantial accumulation in plasma occurred at steady-state after the 10th dose for both doses. The results of this study show that diclazuril pellets given at the approved label dose and a lower dose both produce similar plasma drug concentrations at steady-state and attain plasma and CSF concentrations known to inhibit Sarcocystis neurona in cell culture.

AB - The purpose of this study was to determine the pharmacokinetics of the FDA-approved labeled dose of diclazuril and compare it to a low dose in plasma and CSF in adult horses. During each research period, six healthy adult horses received 0.5 mg/kg of 1.56% diclazuril pellets (ProtazilTM, Merck Animal Health) compared to the approved labeled dose of 1 mg/kg orally once in two separate phases. A dose of 0.5 mg/kg was calculated to each horse's weight. Blood was then collected immediately before diclazuril administration and then at regular intervals up to a 168 h. After the last blood collection following the single dose at hour 168, a once daily oral dose was administered for the next 10 days to ensure the drug's concentration reached steady-state. To determine the CSF concentration at steady-state, CSF samples were collected after the 9th oral dose. Blood was then collected after the 10th dose and then at regular intervals up to 168 h. A washout period of 4 weeks was allowed before repeating this protocol for the FDA-labeled dose at 1 mg/kg. Plasma and CSF samples were analyzed by high-pressure liquid chromatography. A one-compartment pharmacokinetic model with first-order oral absorption was fitted to the single administration data. Steady-state pharmacokinetics was performed using noncompartmental analysis for steady-state analysis. The mean (standard deviation) concentration of diclazuril in CSF following the low dose was 26 ng/mL (5 ng/mL), while CSF in the FDA-labeled dose was 25 ng/mL (4 ng/mL), P = 0.3750. Substantial accumulation in plasma occurred at steady-state after the 10th dose for both doses. The results of this study show that diclazuril pellets given at the approved label dose and a lower dose both produce similar plasma drug concentrations at steady-state and attain plasma and CSF concentrations known to inhibit Sarcocystis neurona in cell culture.

UR - http://www.scopus.com/inward/record.url?scp=84928159908&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84928159908&partnerID=8YFLogxK

U2 - 10.1111/jvp.12176

DO - 10.1111/jvp.12176

M3 - Article

C2 - 25329774

AN - SCOPUS:84928159908

VL - 38

SP - 243

EP - 248

JO - Journal of Veterinary Pharmacology and Therapeutics

JF - Journal of Veterinary Pharmacology and Therapeutics

SN - 0140-7783

IS - 3

ER -