Permeability of single capillaries to intermediate-sized colored solutes.

F. E. Curry, V. H. Huxley, R. H. Adamson

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

The fiber matrix theory of capillary permeability was evaluated by measuring permeability coefficients to colored solutes with Stokes radii between 0.5 and 1.76 nm. In vivo calibration of a microscope photometer established the range of linearity for optical density measurements from a rectangular window that included the test capillary and surrounding tissue. In individually perfused capillaries of frog mesentery the following permeability coefficients, expressed as mean +/- SE X 10(5) cm/s were obtained: azure C (mol wt 277), 11.0 +/- 0.2; patent blue violet (566), 3.95 +/- 0.67; Evans blue (960), 1.15 +/- 0.23; microperoxidase (1,900), 1.13 +/- 0.31; and FITC-dextran 3 (3,400), 0.48 +/- 0.18. There is significant restriction to diffusion of all solutes larger than azure C. Fibers 0.5 nm in radius occupying 8.5% of the volume of intercellular junctions (area 2.2 X 10(-3) cm2/cm2, depth 0.6 X 10(-4) cm) account for the 22-fold range of measured permeabilities. The fiber density estimated is larger than that required to describe water flow through the junction. Negative charges on solutes larger than 0.5 nm radius may contribute to exclusion and restriction to diffusion in intercellular junctions.

Original languageEnglish (US)
JournalThe American journal of physiology
Volume245
Issue number3
StatePublished - Sep 1983

Fingerprint

Capillary Permeability
Permeability
Intercellular Junctions
Evans Blue
Unmyelinated Nerve Fibers
Mesentery
Anura
Calibration
Water
Azure C

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Permeability of single capillaries to intermediate-sized colored solutes. / Curry, F. E.; Huxley, V. H.; Adamson, R. H.

In: The American journal of physiology, Vol. 245, No. 3, 09.1983.

Research output: Contribution to journalArticle

Curry, F. E. ; Huxley, V. H. ; Adamson, R. H. / Permeability of single capillaries to intermediate-sized colored solutes. In: The American journal of physiology. 1983 ; Vol. 245, No. 3.
@article{9dfb1e2392864a3eb4b29b5b16dd7575,
title = "Permeability of single capillaries to intermediate-sized colored solutes.",
abstract = "The fiber matrix theory of capillary permeability was evaluated by measuring permeability coefficients to colored solutes with Stokes radii between 0.5 and 1.76 nm. In vivo calibration of a microscope photometer established the range of linearity for optical density measurements from a rectangular window that included the test capillary and surrounding tissue. In individually perfused capillaries of frog mesentery the following permeability coefficients, expressed as mean +/- SE X 10(5) cm/s were obtained: azure C (mol wt 277), 11.0 +/- 0.2; patent blue violet (566), 3.95 +/- 0.67; Evans blue (960), 1.15 +/- 0.23; microperoxidase (1,900), 1.13 +/- 0.31; and FITC-dextran 3 (3,400), 0.48 +/- 0.18. There is significant restriction to diffusion of all solutes larger than azure C. Fibers 0.5 nm in radius occupying 8.5{\%} of the volume of intercellular junctions (area 2.2 X 10(-3) cm2/cm2, depth 0.6 X 10(-4) cm) account for the 22-fold range of measured permeabilities. The fiber density estimated is larger than that required to describe water flow through the junction. Negative charges on solutes larger than 0.5 nm radius may contribute to exclusion and restriction to diffusion in intercellular junctions.",
author = "Curry, {F. E.} and Huxley, {V. H.} and Adamson, {R. H.}",
year = "1983",
month = "9",
language = "English (US)",
volume = "245",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Permeability of single capillaries to intermediate-sized colored solutes.

AU - Curry, F. E.

AU - Huxley, V. H.

AU - Adamson, R. H.

PY - 1983/9

Y1 - 1983/9

N2 - The fiber matrix theory of capillary permeability was evaluated by measuring permeability coefficients to colored solutes with Stokes radii between 0.5 and 1.76 nm. In vivo calibration of a microscope photometer established the range of linearity for optical density measurements from a rectangular window that included the test capillary and surrounding tissue. In individually perfused capillaries of frog mesentery the following permeability coefficients, expressed as mean +/- SE X 10(5) cm/s were obtained: azure C (mol wt 277), 11.0 +/- 0.2; patent blue violet (566), 3.95 +/- 0.67; Evans blue (960), 1.15 +/- 0.23; microperoxidase (1,900), 1.13 +/- 0.31; and FITC-dextran 3 (3,400), 0.48 +/- 0.18. There is significant restriction to diffusion of all solutes larger than azure C. Fibers 0.5 nm in radius occupying 8.5% of the volume of intercellular junctions (area 2.2 X 10(-3) cm2/cm2, depth 0.6 X 10(-4) cm) account for the 22-fold range of measured permeabilities. The fiber density estimated is larger than that required to describe water flow through the junction. Negative charges on solutes larger than 0.5 nm radius may contribute to exclusion and restriction to diffusion in intercellular junctions.

AB - The fiber matrix theory of capillary permeability was evaluated by measuring permeability coefficients to colored solutes with Stokes radii between 0.5 and 1.76 nm. In vivo calibration of a microscope photometer established the range of linearity for optical density measurements from a rectangular window that included the test capillary and surrounding tissue. In individually perfused capillaries of frog mesentery the following permeability coefficients, expressed as mean +/- SE X 10(5) cm/s were obtained: azure C (mol wt 277), 11.0 +/- 0.2; patent blue violet (566), 3.95 +/- 0.67; Evans blue (960), 1.15 +/- 0.23; microperoxidase (1,900), 1.13 +/- 0.31; and FITC-dextran 3 (3,400), 0.48 +/- 0.18. There is significant restriction to diffusion of all solutes larger than azure C. Fibers 0.5 nm in radius occupying 8.5% of the volume of intercellular junctions (area 2.2 X 10(-3) cm2/cm2, depth 0.6 X 10(-4) cm) account for the 22-fold range of measured permeabilities. The fiber density estimated is larger than that required to describe water flow through the junction. Negative charges on solutes larger than 0.5 nm radius may contribute to exclusion and restriction to diffusion in intercellular junctions.

UR - http://www.scopus.com/inward/record.url?scp=0020825466&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020825466&partnerID=8YFLogxK

M3 - Article

C2 - 6604463

AN - SCOPUS:0020825466

VL - 245

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 3

ER -