Ozone-induced Alterations in Glutathione in Lung Subcompartments of Rats and Monkeys

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

The current studies were designed to test two hypotheses: (1) differences in steady-state reduced glutathione levels are responsible for subcompartment differences in susceptibility to acute ozone injury, and (2) elevation of reduced glutathione concentrations accounts for the tolerance to further injury produced by repeated ozone exposure. Glutathione was measured in well-defined subcompartments of the lung of both rats and monkeys to compare alterations occurring in both target (distal trachea and terminal bronchiole) and nontarget areas (lobar bronchus, major daughter, minor daughter bronchus, and parenchyma) of the lung in species that differ in sensitivity to ozone exposure (rat is less susceptible than monkey). Glutathione concentrations were decreased in trachea of rats exposed to 0.4 ppm ozone for 2 h and increased in lobar bronchus and distal bronchiole after 2 h exposure at 1 ppm. In monkey, glutathione levels in most subcompartments were not altered by either 0.4 or 1.0 ppm ozone exposure for 2 h. The exceptions were the major daughter subcompartment (200% of control at 0.4 ppm exposure) and the distal bronchiole (55% of control at 1 ppm exposure). Ninety day ozone exposures (6 h/day × 5 days/week) in rats produced an elevation in glutathione (164% of control value) only in distal bronchiole at the 1 ppm exposure level. In a similar manner, glutathione levels in the distal bronchiole of monkeys exposed for 90 days to 1 ppm O3 were 165% of the corresponding control values. These results suggest the following: glutathione levels in target and nontarget areas of the lung and in susceptible versus less susceptible species are not the primary determinant in the differences observed in ozone toxicity; the response of lung subcompartments to short-term ozone exposure varied depending on airway subcompartment and species; increased glutathione levels may be one reason for adaptation of some airway epithelial cells from rats and monkeys exposed to O3 for long periods; and use of well-defined segments of the lung provides a means of assessing changes in target areas of the lung without dilution from nontarget areas.

Original languageEnglish (US)
Pages (from-to)70-75
Number of pages6
JournalAmerican Journal of Respiratory Cell and Molecular Biology
Volume14
Issue number1
StatePublished - 1996

Fingerprint

Ozone
Haplorhini
Glutathione
Rats
Bronchioles
Lung
Bronchi
Trachea
Wounds and Injuries
Dilution
Toxicity
Epithelial Cells

ASJC Scopus subject areas

  • Cell Biology
  • Molecular Biology
  • Pulmonary and Respiratory Medicine

Cite this

@article{f5ce10c455134cdaa3b50f99e7bde3cf,
title = "Ozone-induced Alterations in Glutathione in Lung Subcompartments of Rats and Monkeys",
abstract = "The current studies were designed to test two hypotheses: (1) differences in steady-state reduced glutathione levels are responsible for subcompartment differences in susceptibility to acute ozone injury, and (2) elevation of reduced glutathione concentrations accounts for the tolerance to further injury produced by repeated ozone exposure. Glutathione was measured in well-defined subcompartments of the lung of both rats and monkeys to compare alterations occurring in both target (distal trachea and terminal bronchiole) and nontarget areas (lobar bronchus, major daughter, minor daughter bronchus, and parenchyma) of the lung in species that differ in sensitivity to ozone exposure (rat is less susceptible than monkey). Glutathione concentrations were decreased in trachea of rats exposed to 0.4 ppm ozone for 2 h and increased in lobar bronchus and distal bronchiole after 2 h exposure at 1 ppm. In monkey, glutathione levels in most subcompartments were not altered by either 0.4 or 1.0 ppm ozone exposure for 2 h. The exceptions were the major daughter subcompartment (200{\%} of control at 0.4 ppm exposure) and the distal bronchiole (55{\%} of control at 1 ppm exposure). Ninety day ozone exposures (6 h/day × 5 days/week) in rats produced an elevation in glutathione (164{\%} of control value) only in distal bronchiole at the 1 ppm exposure level. In a similar manner, glutathione levels in the distal bronchiole of monkeys exposed for 90 days to 1 ppm O3 were 165{\%} of the corresponding control values. These results suggest the following: glutathione levels in target and nontarget areas of the lung and in susceptible versus less susceptible species are not the primary determinant in the differences observed in ozone toxicity; the response of lung subcompartments to short-term ozone exposure varied depending on airway subcompartment and species; increased glutathione levels may be one reason for adaptation of some airway epithelial cells from rats and monkeys exposed to O3 for long periods; and use of well-defined segments of the lung provides a means of assessing changes in target areas of the lung without dilution from nontarget areas.",
author = "Xiuzhen Duan and Buckpitt, {Alan R.} and Pinkerton, {Kent E.} and Chunmei Ji and Plopper, {Charles G.}",
year = "1996",
language = "English (US)",
volume = "14",
pages = "70--75",
journal = "American Journal of Respiratory Cell and Molecular Biology",
issn = "1044-1549",
publisher = "American Thoracic Society",
number = "1",

}

TY - JOUR

T1 - Ozone-induced Alterations in Glutathione in Lung Subcompartments of Rats and Monkeys

AU - Duan, Xiuzhen

AU - Buckpitt, Alan R.

AU - Pinkerton, Kent E.

AU - Ji, Chunmei

AU - Plopper, Charles G.

PY - 1996

Y1 - 1996

N2 - The current studies were designed to test two hypotheses: (1) differences in steady-state reduced glutathione levels are responsible for subcompartment differences in susceptibility to acute ozone injury, and (2) elevation of reduced glutathione concentrations accounts for the tolerance to further injury produced by repeated ozone exposure. Glutathione was measured in well-defined subcompartments of the lung of both rats and monkeys to compare alterations occurring in both target (distal trachea and terminal bronchiole) and nontarget areas (lobar bronchus, major daughter, minor daughter bronchus, and parenchyma) of the lung in species that differ in sensitivity to ozone exposure (rat is less susceptible than monkey). Glutathione concentrations were decreased in trachea of rats exposed to 0.4 ppm ozone for 2 h and increased in lobar bronchus and distal bronchiole after 2 h exposure at 1 ppm. In monkey, glutathione levels in most subcompartments were not altered by either 0.4 or 1.0 ppm ozone exposure for 2 h. The exceptions were the major daughter subcompartment (200% of control at 0.4 ppm exposure) and the distal bronchiole (55% of control at 1 ppm exposure). Ninety day ozone exposures (6 h/day × 5 days/week) in rats produced an elevation in glutathione (164% of control value) only in distal bronchiole at the 1 ppm exposure level. In a similar manner, glutathione levels in the distal bronchiole of monkeys exposed for 90 days to 1 ppm O3 were 165% of the corresponding control values. These results suggest the following: glutathione levels in target and nontarget areas of the lung and in susceptible versus less susceptible species are not the primary determinant in the differences observed in ozone toxicity; the response of lung subcompartments to short-term ozone exposure varied depending on airway subcompartment and species; increased glutathione levels may be one reason for adaptation of some airway epithelial cells from rats and monkeys exposed to O3 for long periods; and use of well-defined segments of the lung provides a means of assessing changes in target areas of the lung without dilution from nontarget areas.

AB - The current studies were designed to test two hypotheses: (1) differences in steady-state reduced glutathione levels are responsible for subcompartment differences in susceptibility to acute ozone injury, and (2) elevation of reduced glutathione concentrations accounts for the tolerance to further injury produced by repeated ozone exposure. Glutathione was measured in well-defined subcompartments of the lung of both rats and monkeys to compare alterations occurring in both target (distal trachea and terminal bronchiole) and nontarget areas (lobar bronchus, major daughter, minor daughter bronchus, and parenchyma) of the lung in species that differ in sensitivity to ozone exposure (rat is less susceptible than monkey). Glutathione concentrations were decreased in trachea of rats exposed to 0.4 ppm ozone for 2 h and increased in lobar bronchus and distal bronchiole after 2 h exposure at 1 ppm. In monkey, glutathione levels in most subcompartments were not altered by either 0.4 or 1.0 ppm ozone exposure for 2 h. The exceptions were the major daughter subcompartment (200% of control at 0.4 ppm exposure) and the distal bronchiole (55% of control at 1 ppm exposure). Ninety day ozone exposures (6 h/day × 5 days/week) in rats produced an elevation in glutathione (164% of control value) only in distal bronchiole at the 1 ppm exposure level. In a similar manner, glutathione levels in the distal bronchiole of monkeys exposed for 90 days to 1 ppm O3 were 165% of the corresponding control values. These results suggest the following: glutathione levels in target and nontarget areas of the lung and in susceptible versus less susceptible species are not the primary determinant in the differences observed in ozone toxicity; the response of lung subcompartments to short-term ozone exposure varied depending on airway subcompartment and species; increased glutathione levels may be one reason for adaptation of some airway epithelial cells from rats and monkeys exposed to O3 for long periods; and use of well-defined segments of the lung provides a means of assessing changes in target areas of the lung without dilution from nontarget areas.

UR - http://www.scopus.com/inward/record.url?scp=0029685911&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029685911&partnerID=8YFLogxK

M3 - Article

C2 - 8534488

AN - SCOPUS:0029685911

VL - 14

SP - 70

EP - 75

JO - American Journal of Respiratory Cell and Molecular Biology

JF - American Journal of Respiratory Cell and Molecular Biology

SN - 1044-1549

IS - 1

ER -