Ozone and high ventilation effects on pulmonary function and endurance performance

W. C. Adams, Edward S Schelegle

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Ozone (O3) toxicity is potentiated by exercise-induced expired minute ventilation (VE) for a given exposure, which may also impair endurance performance. Ten healthy, well-trained long-distance runners were exposed on six occasions for 1 h to O3 concentrations of 0, 0.20, or 0.35 parts per million (ppm), during exercise simulating either training or competition, with mean VE = 77.5 l·min-1. Standard pulmonary function tests, subjective symptoms, and periodic observations of exercise ventilatory response and respiratory metabolism were obtained. Statistical analyses revealed no significant exercise mode effect for pulmonary function, but a significant O3 effect for forced vital capacity and expiratory volume at 1 s was observed. Altered exercise ventilatory pattern response was noted, but there was no significant O3 effect on exercise oxygen uptake, heart rate, VE, or alveolar ventilation. Statistically significant pulmonary function impairment observed at 0.20 ppm O3 suggests that endurance athletes may be more susceptible to the effects of a given O3 concentration than normal young adult males as a result of sustained high mean VE incurred during training and competition. Three subjects were unable to complete both the training and competitive simulations at 0.35 ppm O3. Performance decrements appeared to be the result of physiologically induced respiratory discomfort rather than decrements in pulmonary gas exchange and/or oxygen transport and delivery.

Original languageEnglish (US)
Pages (from-to)805-812
Number of pages8
JournalJournal of Applied Physiology Respiratory Environmental and Exercise Physiology
Volume55
Issue number3
StatePublished - 1983

Fingerprint

Ozone
Ventilation
Exercise
Lung
Oxygen
Pulmonary Gas Exchange
Respiratory Function Tests
Vital Capacity
Athletes
Young Adult
Heart Rate

ASJC Scopus subject areas

  • Endocrinology
  • Physiology

Cite this

@article{c767692bf86c48ccbc9ae1842260ad10,
title = "Ozone and high ventilation effects on pulmonary function and endurance performance",
abstract = "Ozone (O3) toxicity is potentiated by exercise-induced expired minute ventilation (VE) for a given exposure, which may also impair endurance performance. Ten healthy, well-trained long-distance runners were exposed on six occasions for 1 h to O3 concentrations of 0, 0.20, or 0.35 parts per million (ppm), during exercise simulating either training or competition, with mean VE = 77.5 l·min-1. Standard pulmonary function tests, subjective symptoms, and periodic observations of exercise ventilatory response and respiratory metabolism were obtained. Statistical analyses revealed no significant exercise mode effect for pulmonary function, but a significant O3 effect for forced vital capacity and expiratory volume at 1 s was observed. Altered exercise ventilatory pattern response was noted, but there was no significant O3 effect on exercise oxygen uptake, heart rate, VE, or alveolar ventilation. Statistically significant pulmonary function impairment observed at 0.20 ppm O3 suggests that endurance athletes may be more susceptible to the effects of a given O3 concentration than normal young adult males as a result of sustained high mean VE incurred during training and competition. Three subjects were unable to complete both the training and competitive simulations at 0.35 ppm O3. Performance decrements appeared to be the result of physiologically induced respiratory discomfort rather than decrements in pulmonary gas exchange and/or oxygen transport and delivery.",
author = "Adams, {W. C.} and Schelegle, {Edward S}",
year = "1983",
language = "English (US)",
volume = "55",
pages = "805--812",
journal = "Journal of Applied Physiology",
issn = "8750-7587",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Ozone and high ventilation effects on pulmonary function and endurance performance

AU - Adams, W. C.

AU - Schelegle, Edward S

PY - 1983

Y1 - 1983

N2 - Ozone (O3) toxicity is potentiated by exercise-induced expired minute ventilation (VE) for a given exposure, which may also impair endurance performance. Ten healthy, well-trained long-distance runners were exposed on six occasions for 1 h to O3 concentrations of 0, 0.20, or 0.35 parts per million (ppm), during exercise simulating either training or competition, with mean VE = 77.5 l·min-1. Standard pulmonary function tests, subjective symptoms, and periodic observations of exercise ventilatory response and respiratory metabolism were obtained. Statistical analyses revealed no significant exercise mode effect for pulmonary function, but a significant O3 effect for forced vital capacity and expiratory volume at 1 s was observed. Altered exercise ventilatory pattern response was noted, but there was no significant O3 effect on exercise oxygen uptake, heart rate, VE, or alveolar ventilation. Statistically significant pulmonary function impairment observed at 0.20 ppm O3 suggests that endurance athletes may be more susceptible to the effects of a given O3 concentration than normal young adult males as a result of sustained high mean VE incurred during training and competition. Three subjects were unable to complete both the training and competitive simulations at 0.35 ppm O3. Performance decrements appeared to be the result of physiologically induced respiratory discomfort rather than decrements in pulmonary gas exchange and/or oxygen transport and delivery.

AB - Ozone (O3) toxicity is potentiated by exercise-induced expired minute ventilation (VE) for a given exposure, which may also impair endurance performance. Ten healthy, well-trained long-distance runners were exposed on six occasions for 1 h to O3 concentrations of 0, 0.20, or 0.35 parts per million (ppm), during exercise simulating either training or competition, with mean VE = 77.5 l·min-1. Standard pulmonary function tests, subjective symptoms, and periodic observations of exercise ventilatory response and respiratory metabolism were obtained. Statistical analyses revealed no significant exercise mode effect for pulmonary function, but a significant O3 effect for forced vital capacity and expiratory volume at 1 s was observed. Altered exercise ventilatory pattern response was noted, but there was no significant O3 effect on exercise oxygen uptake, heart rate, VE, or alveolar ventilation. Statistically significant pulmonary function impairment observed at 0.20 ppm O3 suggests that endurance athletes may be more susceptible to the effects of a given O3 concentration than normal young adult males as a result of sustained high mean VE incurred during training and competition. Three subjects were unable to complete both the training and competitive simulations at 0.35 ppm O3. Performance decrements appeared to be the result of physiologically induced respiratory discomfort rather than decrements in pulmonary gas exchange and/or oxygen transport and delivery.

UR - http://www.scopus.com/inward/record.url?scp=0020635516&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020635516&partnerID=8YFLogxK

M3 - Article

C2 - 6629918

AN - SCOPUS:0020635516

VL - 55

SP - 805

EP - 812

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 8750-7587

IS - 3

ER -