ortho-substituted PCB95 alters intracellular calcium signaling and causes cellular acidification in PC12 cells by an immunophilin-dependent mechanism

Patty W. Wong, Eric F. Garcia, Isaac N Pessah

Research output: Contribution to journalArticle

48 Scopus citations

Abstract

ortho-Substituted PCBs mobilize Ca2+from isolated brain microsomes by interaction with FKBP12/RyR complexes. Investigation into the cellular importance of this mechanism was undertaken using PC12 cells by fluoroimaging the actions of specific PCB congeners on [Ca2+]i and pH. RyR and IP3R share a common intracellular Ca2+ store in PC12 cells. Perfusion of nM to low μM PCB95 caused a transient rise of [Ca2+]i that was not completely dependent on extracellular Ca2+. Pre-incubation of the cells with ryanodine or FK506 completely eliminated PCB95 responses, suggesting a primary action on the FKPP12/RyR-sensitive store. PCB95, but not PCB126, induced a gradual decrease in cytosolic pH that could be completely eliminated by FK506 pre-incubation of the cells. Direct respiration measurement using isolated brain mitochondria demonstrated that neither of the PCBs directly altered any stage of mitochondrial respiration. These results revealed that PCB95 disrupts intracellular Ca2+ signaling in PC12 cells by interaction with the FKBP12/RyR complex that in turn accelerated cellular metabolism, possibly affecting signaling between ER and mitochondria. Since ortho-substituted PCBs have been shown to be neurotoxic and may affect neurodevelopment, studies on the molecular mechanism by which they alter cellular signaling may provide valuable information on the physiological roles of FKPB12 and RyR on neuronal functions.

Original languageEnglish (US)
Pages (from-to)450-463
Number of pages14
JournalJournal of Neurochemistry
Volume76
Issue number2
DOIs
StatePublished - 2001

Keywords

  • FKBP12
  • Immunophilin
  • Mitochondrial respiration
  • PC12 cell
  • Polychlorinated biphenyl
  • Ryanodine receptor

ASJC Scopus subject areas

  • Biochemistry
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'ortho-substituted PCB95 alters intracellular calcium signaling and causes cellular acidification in PC12 cells by an immunophilin-dependent mechanism'. Together they form a unique fingerprint.

  • Cite this