Optimization of a depth of interaction encoding PET block detector for a PET/MRI insert

Aaron R. Selfridge, Simon R Cherry, Martin S. Judenhofer

Research output: Contribution to journalArticle

Abstract

Preclinical positron emission tomography, combined with magnetic resonance imaging (PET/MRI), is increasingly used as a tool to simultaneously characterize functional processes in vivo. Many emerging preclinical applications, however, are limited by PET detection sensitivity, especially when generating short imaging frames for quantitative studies. One such application is dynamic multifunctional imaging, which probes multiple aspects of a biological process, using relationships between the datasets to quantify interactions. These studies have limited accuracy due to the relatively low sensitivity of modern preclinical PET/MRI systems. The goal of this project is to develop a preclinical PET/MRI insert with detection sensitivity above 15% (250-750 keV) to improve quantitation in dynamic PET imaging. To achieve this sensitivity, we have developed a detector module incorporating a 2 cm thick crystal block, which will be arranged into a system with 8 cm axial FOV, targeting mice and rats. To maintain homogenous spatial resolution, the detector will incorporate dual-ended depth-of-interaction (DOI) encoding with silicon photomultiplier (SiPM) based photodetector arrays. The specific aim of this work is to identify a detector configuration with adequate performance for the proposed system. We have optimized the SiPM array geometry and tested two crystal array materials with pitch ranging from 0.8 to 1.2 mm and various surface treatments and reflectors. From these configurations, we have identified the best balance between crystal separation, energy resolution, and DOI resolution. The final detector module uses two rectangular SiPM arrays with 5 × 6 and 5 × 4 elements. The photodetector arrays are coupled to a 19 × 19 array of 1 mm pitch LYSO crystals with polished surfaces and a diffuse reflector. The prototype design has 14.3% ± 2.9% energy resolution, 3.57 ± 0.88 mm DOI resolution, and resolves all elements in the crystal array, giving it sufficient performance to serve as the basis for the proposed high sensitivity PET/MRI insert.

Original languageEnglish (US)
Article number235031
JournalPhysics in Medicine and Biology
Volume63
Issue number23
DOIs
StatePublished - Dec 6 2018

Fingerprint

Positron-Emission Tomography
Silicon
Magnetic Resonance Imaging
Biological Phenomena

Keywords

  • depth of interaction
  • magnetic resonance imaging
  • positron emission tomography
  • silicon photomultiplier

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Cite this

Optimization of a depth of interaction encoding PET block detector for a PET/MRI insert. / Selfridge, Aaron R.; Cherry, Simon R; Judenhofer, Martin S.

In: Physics in Medicine and Biology, Vol. 63, No. 23, 235031, 06.12.2018.

Research output: Contribution to journalArticle

@article{541af4b3df7241d69d5017af52b987e9,
title = "Optimization of a depth of interaction encoding PET block detector for a PET/MRI insert",
abstract = "Preclinical positron emission tomography, combined with magnetic resonance imaging (PET/MRI), is increasingly used as a tool to simultaneously characterize functional processes in vivo. Many emerging preclinical applications, however, are limited by PET detection sensitivity, especially when generating short imaging frames for quantitative studies. One such application is dynamic multifunctional imaging, which probes multiple aspects of a biological process, using relationships between the datasets to quantify interactions. These studies have limited accuracy due to the relatively low sensitivity of modern preclinical PET/MRI systems. The goal of this project is to develop a preclinical PET/MRI insert with detection sensitivity above 15{\%} (250-750 keV) to improve quantitation in dynamic PET imaging. To achieve this sensitivity, we have developed a detector module incorporating a 2 cm thick crystal block, which will be arranged into a system with 8 cm axial FOV, targeting mice and rats. To maintain homogenous spatial resolution, the detector will incorporate dual-ended depth-of-interaction (DOI) encoding with silicon photomultiplier (SiPM) based photodetector arrays. The specific aim of this work is to identify a detector configuration with adequate performance for the proposed system. We have optimized the SiPM array geometry and tested two crystal array materials with pitch ranging from 0.8 to 1.2 mm and various surface treatments and reflectors. From these configurations, we have identified the best balance between crystal separation, energy resolution, and DOI resolution. The final detector module uses two rectangular SiPM arrays with 5 × 6 and 5 × 4 elements. The photodetector arrays are coupled to a 19 × 19 array of 1 mm pitch LYSO crystals with polished surfaces and a diffuse reflector. The prototype design has 14.3{\%} ± 2.9{\%} energy resolution, 3.57 ± 0.88 mm DOI resolution, and resolves all elements in the crystal array, giving it sufficient performance to serve as the basis for the proposed high sensitivity PET/MRI insert.",
keywords = "depth of interaction, magnetic resonance imaging, positron emission tomography, silicon photomultiplier",
author = "Selfridge, {Aaron R.} and Cherry, {Simon R} and Judenhofer, {Martin S.}",
year = "2018",
month = "12",
day = "6",
doi = "10.1088/1361-6560/aaef59",
language = "English (US)",
volume = "63",
journal = "Physics in Medicine and Biology",
issn = "0031-9155",
publisher = "IOP Publishing Ltd.",
number = "23",

}

TY - JOUR

T1 - Optimization of a depth of interaction encoding PET block detector for a PET/MRI insert

AU - Selfridge, Aaron R.

AU - Cherry, Simon R

AU - Judenhofer, Martin S.

PY - 2018/12/6

Y1 - 2018/12/6

N2 - Preclinical positron emission tomography, combined with magnetic resonance imaging (PET/MRI), is increasingly used as a tool to simultaneously characterize functional processes in vivo. Many emerging preclinical applications, however, are limited by PET detection sensitivity, especially when generating short imaging frames for quantitative studies. One such application is dynamic multifunctional imaging, which probes multiple aspects of a biological process, using relationships between the datasets to quantify interactions. These studies have limited accuracy due to the relatively low sensitivity of modern preclinical PET/MRI systems. The goal of this project is to develop a preclinical PET/MRI insert with detection sensitivity above 15% (250-750 keV) to improve quantitation in dynamic PET imaging. To achieve this sensitivity, we have developed a detector module incorporating a 2 cm thick crystal block, which will be arranged into a system with 8 cm axial FOV, targeting mice and rats. To maintain homogenous spatial resolution, the detector will incorporate dual-ended depth-of-interaction (DOI) encoding with silicon photomultiplier (SiPM) based photodetector arrays. The specific aim of this work is to identify a detector configuration with adequate performance for the proposed system. We have optimized the SiPM array geometry and tested two crystal array materials with pitch ranging from 0.8 to 1.2 mm and various surface treatments and reflectors. From these configurations, we have identified the best balance between crystal separation, energy resolution, and DOI resolution. The final detector module uses two rectangular SiPM arrays with 5 × 6 and 5 × 4 elements. The photodetector arrays are coupled to a 19 × 19 array of 1 mm pitch LYSO crystals with polished surfaces and a diffuse reflector. The prototype design has 14.3% ± 2.9% energy resolution, 3.57 ± 0.88 mm DOI resolution, and resolves all elements in the crystal array, giving it sufficient performance to serve as the basis for the proposed high sensitivity PET/MRI insert.

AB - Preclinical positron emission tomography, combined with magnetic resonance imaging (PET/MRI), is increasingly used as a tool to simultaneously characterize functional processes in vivo. Many emerging preclinical applications, however, are limited by PET detection sensitivity, especially when generating short imaging frames for quantitative studies. One such application is dynamic multifunctional imaging, which probes multiple aspects of a biological process, using relationships between the datasets to quantify interactions. These studies have limited accuracy due to the relatively low sensitivity of modern preclinical PET/MRI systems. The goal of this project is to develop a preclinical PET/MRI insert with detection sensitivity above 15% (250-750 keV) to improve quantitation in dynamic PET imaging. To achieve this sensitivity, we have developed a detector module incorporating a 2 cm thick crystal block, which will be arranged into a system with 8 cm axial FOV, targeting mice and rats. To maintain homogenous spatial resolution, the detector will incorporate dual-ended depth-of-interaction (DOI) encoding with silicon photomultiplier (SiPM) based photodetector arrays. The specific aim of this work is to identify a detector configuration with adequate performance for the proposed system. We have optimized the SiPM array geometry and tested two crystal array materials with pitch ranging from 0.8 to 1.2 mm and various surface treatments and reflectors. From these configurations, we have identified the best balance between crystal separation, energy resolution, and DOI resolution. The final detector module uses two rectangular SiPM arrays with 5 × 6 and 5 × 4 elements. The photodetector arrays are coupled to a 19 × 19 array of 1 mm pitch LYSO crystals with polished surfaces and a diffuse reflector. The prototype design has 14.3% ± 2.9% energy resolution, 3.57 ± 0.88 mm DOI resolution, and resolves all elements in the crystal array, giving it sufficient performance to serve as the basis for the proposed high sensitivity PET/MRI insert.

KW - depth of interaction

KW - magnetic resonance imaging

KW - positron emission tomography

KW - silicon photomultiplier

UR - http://www.scopus.com/inward/record.url?scp=85058058029&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85058058029&partnerID=8YFLogxK

U2 - 10.1088/1361-6560/aaef59

DO - 10.1088/1361-6560/aaef59

M3 - Article

C2 - 30520420

AN - SCOPUS:85058058029

VL - 63

JO - Physics in Medicine and Biology

JF - Physics in Medicine and Biology

SN - 0031-9155

IS - 23

M1 - 235031

ER -