Ontogenic changes in lactoferrin receptor and DMT1 in mouse small intestine

Implications for iron absorption during early life

Veronica Lopez, Yasushi A. Suzuki, Bo Lönnerdal

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

It has been proposed that lactoferrin receptor (LfR) may be involved in intestinal iron transport during early life. However, it is known that iron homeostasis is regulated by divalent metal transporter 1 (DMT1; Nramp2/DCT1) in the adult small intestine. To address the hypothesis that LfR may play a role as an alternative iron transport pathway during early life, we used immunohistochemistry (IHC) to examine the localization of mouse LfR (mLfR) and DMT1. In addition to studying the localization and abundance of LfR and DMT1 on the apical membrane, intestinal brush-border membrane vesicles (BBMV) were isolated during the first 3 postnatal weeks (postnatal day (PD) 0, 5, 10, and 20). We found that mLfR is expressed in fetal mice as early as gestational days (GD) 13.5, 15.5, and 18.5. A 34 kD band for mLfR was detected at PD 0 through PD 20 in total intestine homogenate. However, mLfR protein did not appear in the BBMV preparations until PD 5 and was highly expressed at PD 10. By IHC, DMT1 protein was minimally observed at PD 0 and PD 5, but by PD 10 DMT1 was predominantly localized in the apical membrane of the maturing intestine. BBMV fractionation revealed 50-120 kD protein bands for DMT1. In these BBMV preparations, the apical-membrane-associated 120 kD band for DMT1 increased in abundance with age. However, in the corresponding total homogenates, only the deglycosylated form of DMT1 (50 kD) was identified. These results indicate that DMT1 is mislocalized during late gestation, minimally expressed during early life, and predominantly expressed in its deglycosylated form until PD 20. The immunolocalization and abundant protein expression of mLfR suggest that accrual of iron from Lf may be the principal iron uptake pathway at this age. In conclusion, our findings support the notion that until the development-dependent expression of DMT1 in the intestine is induced, mLfR may serve as an alternative iron uptake pathway.

Original languageEnglish (US)
Pages (from-to)337-344
Number of pages8
JournalBiochemistry and Cell Biology
Volume84
Issue number3
DOIs
StatePublished - Jun 2006

Fingerprint

Small Intestine
Iron
Membranes
Brushes
Microvilli
Intestines
Immunohistochemistry
Proteins
Fractionation
lactoferrin receptors
Homeostasis
Pregnancy

Keywords

  • DMT1
  • Immunohistochemistry
  • Intestine
  • Mouse lactoferrin receptor

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Biochemistry
  • Cell Biology

Cite this

Ontogenic changes in lactoferrin receptor and DMT1 in mouse small intestine : Implications for iron absorption during early life. / Lopez, Veronica; Suzuki, Yasushi A.; Lönnerdal, Bo.

In: Biochemistry and Cell Biology, Vol. 84, No. 3, 06.2006, p. 337-344.

Research output: Contribution to journalArticle

@article{9bfbb0b1ae04499aacbf85345de78224,
title = "Ontogenic changes in lactoferrin receptor and DMT1 in mouse small intestine: Implications for iron absorption during early life",
abstract = "It has been proposed that lactoferrin receptor (LfR) may be involved in intestinal iron transport during early life. However, it is known that iron homeostasis is regulated by divalent metal transporter 1 (DMT1; Nramp2/DCT1) in the adult small intestine. To address the hypothesis that LfR may play a role as an alternative iron transport pathway during early life, we used immunohistochemistry (IHC) to examine the localization of mouse LfR (mLfR) and DMT1. In addition to studying the localization and abundance of LfR and DMT1 on the apical membrane, intestinal brush-border membrane vesicles (BBMV) were isolated during the first 3 postnatal weeks (postnatal day (PD) 0, 5, 10, and 20). We found that mLfR is expressed in fetal mice as early as gestational days (GD) 13.5, 15.5, and 18.5. A 34 kD band for mLfR was detected at PD 0 through PD 20 in total intestine homogenate. However, mLfR protein did not appear in the BBMV preparations until PD 5 and was highly expressed at PD 10. By IHC, DMT1 protein was minimally observed at PD 0 and PD 5, but by PD 10 DMT1 was predominantly localized in the apical membrane of the maturing intestine. BBMV fractionation revealed 50-120 kD protein bands for DMT1. In these BBMV preparations, the apical-membrane-associated 120 kD band for DMT1 increased in abundance with age. However, in the corresponding total homogenates, only the deglycosylated form of DMT1 (50 kD) was identified. These results indicate that DMT1 is mislocalized during late gestation, minimally expressed during early life, and predominantly expressed in its deglycosylated form until PD 20. The immunolocalization and abundant protein expression of mLfR suggest that accrual of iron from Lf may be the principal iron uptake pathway at this age. In conclusion, our findings support the notion that until the development-dependent expression of DMT1 in the intestine is induced, mLfR may serve as an alternative iron uptake pathway.",
keywords = "DMT1, Immunohistochemistry, Intestine, Mouse lactoferrin receptor",
author = "Veronica Lopez and Suzuki, {Yasushi A.} and Bo L{\"o}nnerdal",
year = "2006",
month = "6",
doi = "10.1139/O06-059",
language = "English (US)",
volume = "84",
pages = "337--344",
journal = "Biochemistry and Cell Biology",
issn = "0829-8211",
publisher = "National Research Council of Canada",
number = "3",

}

TY - JOUR

T1 - Ontogenic changes in lactoferrin receptor and DMT1 in mouse small intestine

T2 - Implications for iron absorption during early life

AU - Lopez, Veronica

AU - Suzuki, Yasushi A.

AU - Lönnerdal, Bo

PY - 2006/6

Y1 - 2006/6

N2 - It has been proposed that lactoferrin receptor (LfR) may be involved in intestinal iron transport during early life. However, it is known that iron homeostasis is regulated by divalent metal transporter 1 (DMT1; Nramp2/DCT1) in the adult small intestine. To address the hypothesis that LfR may play a role as an alternative iron transport pathway during early life, we used immunohistochemistry (IHC) to examine the localization of mouse LfR (mLfR) and DMT1. In addition to studying the localization and abundance of LfR and DMT1 on the apical membrane, intestinal brush-border membrane vesicles (BBMV) were isolated during the first 3 postnatal weeks (postnatal day (PD) 0, 5, 10, and 20). We found that mLfR is expressed in fetal mice as early as gestational days (GD) 13.5, 15.5, and 18.5. A 34 kD band for mLfR was detected at PD 0 through PD 20 in total intestine homogenate. However, mLfR protein did not appear in the BBMV preparations until PD 5 and was highly expressed at PD 10. By IHC, DMT1 protein was minimally observed at PD 0 and PD 5, but by PD 10 DMT1 was predominantly localized in the apical membrane of the maturing intestine. BBMV fractionation revealed 50-120 kD protein bands for DMT1. In these BBMV preparations, the apical-membrane-associated 120 kD band for DMT1 increased in abundance with age. However, in the corresponding total homogenates, only the deglycosylated form of DMT1 (50 kD) was identified. These results indicate that DMT1 is mislocalized during late gestation, minimally expressed during early life, and predominantly expressed in its deglycosylated form until PD 20. The immunolocalization and abundant protein expression of mLfR suggest that accrual of iron from Lf may be the principal iron uptake pathway at this age. In conclusion, our findings support the notion that until the development-dependent expression of DMT1 in the intestine is induced, mLfR may serve as an alternative iron uptake pathway.

AB - It has been proposed that lactoferrin receptor (LfR) may be involved in intestinal iron transport during early life. However, it is known that iron homeostasis is regulated by divalent metal transporter 1 (DMT1; Nramp2/DCT1) in the adult small intestine. To address the hypothesis that LfR may play a role as an alternative iron transport pathway during early life, we used immunohistochemistry (IHC) to examine the localization of mouse LfR (mLfR) and DMT1. In addition to studying the localization and abundance of LfR and DMT1 on the apical membrane, intestinal brush-border membrane vesicles (BBMV) were isolated during the first 3 postnatal weeks (postnatal day (PD) 0, 5, 10, and 20). We found that mLfR is expressed in fetal mice as early as gestational days (GD) 13.5, 15.5, and 18.5. A 34 kD band for mLfR was detected at PD 0 through PD 20 in total intestine homogenate. However, mLfR protein did not appear in the BBMV preparations until PD 5 and was highly expressed at PD 10. By IHC, DMT1 protein was minimally observed at PD 0 and PD 5, but by PD 10 DMT1 was predominantly localized in the apical membrane of the maturing intestine. BBMV fractionation revealed 50-120 kD protein bands for DMT1. In these BBMV preparations, the apical-membrane-associated 120 kD band for DMT1 increased in abundance with age. However, in the corresponding total homogenates, only the deglycosylated form of DMT1 (50 kD) was identified. These results indicate that DMT1 is mislocalized during late gestation, minimally expressed during early life, and predominantly expressed in its deglycosylated form until PD 20. The immunolocalization and abundant protein expression of mLfR suggest that accrual of iron from Lf may be the principal iron uptake pathway at this age. In conclusion, our findings support the notion that until the development-dependent expression of DMT1 in the intestine is induced, mLfR may serve as an alternative iron uptake pathway.

KW - DMT1

KW - Immunohistochemistry

KW - Intestine

KW - Mouse lactoferrin receptor

UR - http://www.scopus.com/inward/record.url?scp=33748438863&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33748438863&partnerID=8YFLogxK

U2 - 10.1139/O06-059

DO - 10.1139/O06-059

M3 - Article

VL - 84

SP - 337

EP - 344

JO - Biochemistry and Cell Biology

JF - Biochemistry and Cell Biology

SN - 0829-8211

IS - 3

ER -