Novel distribution of junctional adhesion molecule-C in the neural retina and retinal pigment epithelium

Lauren L. Daniele, Ralf H. Adams, Diane E. Durante, Edward N Pugh Jr, Nancy J. Philp

Research output: Contribution to journalArticle

33 Scopus citations

Abstract

Junction adhesion molecules-A, -B, and -C (Jams) are cell surface glycoproteins that have been shown to play an important role in the assembly and maintenance of tight junctions and in the establishment of epithelial cell polarity. Recent studies reported that Jam-C mRNA was increased threefold in the all-cone retina of the Nrl-/- mouse, suggesting that Jam-C is required for maturation and polarization of cone photoreceptors cells. We examined the expression of Jams in the mouse retina by using confocal immunofluorescence localization. Jam-C was detected in tight junctions of retinal pigment epithelium (RPE) and at the outer limiting membrane (OLM) in the specialized adherens junctions between Müller and photoreceptor cells. Additionally, Jam-C labeling was observed in the long apical processes of Müller and RPE cells that extend between the inner segments and outer segments of photoreceptors, respectively. Jam-B was also detected at the OLM. In the developing retina, Jam-B and -C were detected at the apical junctions of embryonic retinal neuroepithelia, suggesting a role for Jams in retinogenesis. In eyes from Jam-C-/- mice, retinal lamination, polarity, and photoreceptor morphology appeared normal. Although Jam-A was not detected at the OLM in wild-type retinas, it was present at the OLM in retinas of Jam-C -/- mice. These findings indicate that up-regulation of Jam-A in the retina compensates for the loss Jam-C. The nonclassical distribution of Jam-C in the apical membranes of Müller cells and RPE suggests that Jam-C has a novel function in the retina.

Original languageEnglish (US)
Pages (from-to)166-176
Number of pages11
JournalJournal of Comparative Neurology
Volume505
Issue number2
DOIs
StatePublished - Nov 10 2007
Externally publishedYes

    Fingerprint

Keywords

  • Adherens junction
  • Cell polarity
  • Jam-B
  • Jam-C
  • Outer limiting membrane
  • Retina

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this