TY - JOUR
T1 - Next-generation sequencing technologies
AU - McCombie, W. Richard
AU - McPherson, John D.
AU - Mardis, Elaine R.
PY - 2019/11
Y1 - 2019/11
N2 - Although DNA and RNA sequencing has a history spanning five decades, large-scale massively parallel sequencing, or next-generation sequencing (NGS), has only been commercially available for about 10 years. Nonetheless, the meteoric increase in sequencing throughput with NGS has dramatically changed our understanding of our genome and ourselves. Sequencing the first human genome as a haploid reference took nearly 10 years but nowa full diploid human genome sequence can be accomplished in just a fewdays. NGS has also reduced the cost of generating sequence data and a plethora of sequence-based methods for probing a genome have emerged usingNGSas the readout and have been applied to many species. NGS methods have also entered the medical realm and will see an increasing use in diagnosis and treatment. NGS has largely been driven by short-read generation (150 bp) but new platforms have emerged and are now capable of generating long multikilobase reads. These latter platforms enable reference-independent genome assemblies and longrange haplotype generation. Rapid DNA and RNA sequencing is now mainstream and will continue to have an increasing impact on biology and medicine.
AB - Although DNA and RNA sequencing has a history spanning five decades, large-scale massively parallel sequencing, or next-generation sequencing (NGS), has only been commercially available for about 10 years. Nonetheless, the meteoric increase in sequencing throughput with NGS has dramatically changed our understanding of our genome and ourselves. Sequencing the first human genome as a haploid reference took nearly 10 years but nowa full diploid human genome sequence can be accomplished in just a fewdays. NGS has also reduced the cost of generating sequence data and a plethora of sequence-based methods for probing a genome have emerged usingNGSas the readout and have been applied to many species. NGS methods have also entered the medical realm and will see an increasing use in diagnosis and treatment. NGS has largely been driven by short-read generation (150 bp) but new platforms have emerged and are now capable of generating long multikilobase reads. These latter platforms enable reference-independent genome assemblies and longrange haplotype generation. Rapid DNA and RNA sequencing is now mainstream and will continue to have an increasing impact on biology and medicine.
UR - http://www.scopus.com/inward/record.url?scp=85074366475&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074366475&partnerID=8YFLogxK
U2 - 10.1101/cshperspect.a036798
DO - 10.1101/cshperspect.a036798
M3 - Article
C2 - 30478097
AN - SCOPUS:85074366475
VL - 9
JO - Cold Spring Harbor perspectives in medicine
JF - Cold Spring Harbor perspectives in medicine
SN - 2157-1422
IS - 11
M1 - a036798
ER -