Neutrophils exposed to A. phagocytophilum under shear stress fail to fully activate, polarize, and transmigrate across inflamed endothelium

U. Y. Schaff, K. A. Trott, S. Chase, K. Tam, J. L. Johns, J. A. Carlyon, Damian C Genetos, N. J. Walker, S. I. Simon, Dori L Borjesson

Research output: Contribution to journalArticle

8 Scopus citations

Abstract

Anaplasma phagocytophilum is an obligate intracellular bacterium that has evolved mechanisms to hijack polymorphonuclear neutrophil (PMN) receptors and signaling pathways to bind, infect, and multiply within the host cell. E-selectin is upregulated during inflammation and is a requisite endothelial receptor that supports PMN capture, rolling, and activation of integrin-mediated arrest. Ligands expressed by PMN that mediate binding to endothelium via E-selectin include sialyl Lewis x (sLex)-expressing ligands such as P-selectin glycoprotein ligand-1 (PSGL-1) and other glycolipids and glycoproteins. As A. phagocytophilum is capable of binding to sLe x-expressing ligands expressed on PMN, we hypothesized that acute bacterial adhesion to PMN would subsequently attenuate PMN recruitment during inflammation. We assessed the dynamics of PMN recruitment and migration under shear flow in the presence of a wild-type strain of A. phagocytophilum and compared it with a strain of bacteria that binds to PMN independent of PSGL-1. Acute bacterial engagement with PMN resulted in transient PMN arrest and minimal PMN polarization. Although the wild-type pathogen also signaled activation of β2 integrins and elicited a mild intracellular calcium flux, downstream signals including PMN transmigration and phosphorylation of p38 mitogen-activated protein kinase (MAPK) were inhibited. The mutant strain bound less well to PMN and failed to activate β2 integrins and induce a calcium flux but did result in decreased PMN arrest and polarization that may have been partially mediated by a suppression of p38 MAPK activation. This model suggests that A. phagocytophilum binding to PMN under shear flow during recruitment to inflamed endothelium interferes with normal tethering via E-selectin and navigational signaling of transendothelial migration.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Cell Physiology
Volume299
Issue number1
DOIs
StatePublished - Jul 2010

Keywords

  • Bacterial pathogen
  • Granulocytes
  • Neutrophil trafficking

ASJC Scopus subject areas

  • Cell Biology
  • Physiology
  • Medicine(all)

Fingerprint Dive into the research topics of 'Neutrophils exposed to A. phagocytophilum under shear stress fail to fully activate, polarize, and transmigrate across inflamed endothelium'. Together they form a unique fingerprint.

  • Cite this