Neuroligin1: A cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis

Stephanie L. Barrow, John Rl Constable, Eliana Clark, Faten El-Sabeawy, A Kimberley Usrey, Philip Washbourne

Research output: Contribution to journalArticle

80 Citations (Scopus)

Abstract

Background: The cell adhesion molecule pair neuroligin1 (Nlg1) and β-neurexin (β-NRX) is a powerful inducer of postsynaptic differentiation of glutamatergic synapses in vitro. Because Nlg1 induces accumulation of two essential components of the postsynaptic density (PSD) - PSD-95 and NMDA receptors (NMDARs) - and can physically bind PSD-95 and NMDARs at mature synapses, it has been proposed that Nlg1 recruits NMDARs to synapses through its interaction with PSD-95. However, PSD-95 and NMDARs are recruited to nascent synapses independently and it is not known if Nlg1 accumulates at synapses before these PSD proteins. Here, we investigate how a single type of cell adhesion molecule can recruit multiple types of synaptic proteins to new synapses with distinct mechanisms and time courses. Results: Nlg1 was present in young cortical neurons in two distinct pools before synaptogenesis, diffuse and clustered. Time-lapse imaging revealed that the diffuse Nlg1 aggregated at, and the clustered Nlg1 moved to, sites of axodendritic contact with a rapid time course. Using a patching assay that artificially induced clusters of Nlg, the time course and mechanisms of recruitment of PSD-95 and NMDARs to those Nlg clusters were characterized. Patching Nlg induced clustering of PSD-95 via a slow palmitoylation-dependent step. In contrast, NMDARs directly associated with clusters of Nlg1 during trafficking. Nlg1 and NMDARs were highly colocalized in dendrites before synaptogenesis and they became enriched with a similar time course at synapses with age. Patching of Nlg1 dramatically decreased the mobility of NMDAR transport packets. Finally, Nlg1 was biochemically associated with NMDAR transport packets, presumably through binding of NMDARs to MAGUK proteins that, in turn, bind Nlg1. This interaction was essential for colocalization and co-transport of Nlg1 with NMDARs. Conclusion: Our results suggest that axodendritic contact leads to rapid accumulation of Nlg1, recruitment of NMDARs co-transported with Nlg1 soon thereafter, followed by a slower, independent recruitment of PSD-95 to those nascent synapses.

Original languageEnglish (US)
Article number17
JournalNeural Development
Volume4
Issue number1
DOIs
StatePublished - 2009

Fingerprint

Post-Synaptic Density
Cell Adhesion Molecules
N-Methyl-D-Aspartate Receptors
Synapses
Guanylate Kinases
Time-Lapse Imaging
Lipoylation
Dendrites
Cluster Analysis

ASJC Scopus subject areas

  • Developmental Neuroscience

Cite this

Neuroligin1 : A cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. / Barrow, Stephanie L.; Constable, John Rl; Clark, Eliana; El-Sabeawy, Faten; Usrey, A Kimberley; Washbourne, Philip.

In: Neural Development, Vol. 4, No. 1, 17, 2009.

Research output: Contribution to journalArticle

Barrow, Stephanie L. ; Constable, John Rl ; Clark, Eliana ; El-Sabeawy, Faten ; Usrey, A Kimberley ; Washbourne, Philip. / Neuroligin1 : A cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis. In: Neural Development. 2009 ; Vol. 4, No. 1.
@article{b0ea1152356b41649dbd2bf1171ecea2,
title = "Neuroligin1: A cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis",
abstract = "Background: The cell adhesion molecule pair neuroligin1 (Nlg1) and β-neurexin (β-NRX) is a powerful inducer of postsynaptic differentiation of glutamatergic synapses in vitro. Because Nlg1 induces accumulation of two essential components of the postsynaptic density (PSD) - PSD-95 and NMDA receptors (NMDARs) - and can physically bind PSD-95 and NMDARs at mature synapses, it has been proposed that Nlg1 recruits NMDARs to synapses through its interaction with PSD-95. However, PSD-95 and NMDARs are recruited to nascent synapses independently and it is not known if Nlg1 accumulates at synapses before these PSD proteins. Here, we investigate how a single type of cell adhesion molecule can recruit multiple types of synaptic proteins to new synapses with distinct mechanisms and time courses. Results: Nlg1 was present in young cortical neurons in two distinct pools before synaptogenesis, diffuse and clustered. Time-lapse imaging revealed that the diffuse Nlg1 aggregated at, and the clustered Nlg1 moved to, sites of axodendritic contact with a rapid time course. Using a patching assay that artificially induced clusters of Nlg, the time course and mechanisms of recruitment of PSD-95 and NMDARs to those Nlg clusters were characterized. Patching Nlg induced clustering of PSD-95 via a slow palmitoylation-dependent step. In contrast, NMDARs directly associated with clusters of Nlg1 during trafficking. Nlg1 and NMDARs were highly colocalized in dendrites before synaptogenesis and they became enriched with a similar time course at synapses with age. Patching of Nlg1 dramatically decreased the mobility of NMDAR transport packets. Finally, Nlg1 was biochemically associated with NMDAR transport packets, presumably through binding of NMDARs to MAGUK proteins that, in turn, bind Nlg1. This interaction was essential for colocalization and co-transport of Nlg1 with NMDARs. Conclusion: Our results suggest that axodendritic contact leads to rapid accumulation of Nlg1, recruitment of NMDARs co-transported with Nlg1 soon thereafter, followed by a slower, independent recruitment of PSD-95 to those nascent synapses.",
author = "Barrow, {Stephanie L.} and Constable, {John Rl} and Eliana Clark and Faten El-Sabeawy and Usrey, {A Kimberley} and Philip Washbourne",
year = "2009",
doi = "10.1186/1749-8104-4-17",
language = "English (US)",
volume = "4",
journal = "Neural Development",
issn = "1749-8104",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Neuroligin1

T2 - A cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis

AU - Barrow, Stephanie L.

AU - Constable, John Rl

AU - Clark, Eliana

AU - El-Sabeawy, Faten

AU - Usrey, A Kimberley

AU - Washbourne, Philip

PY - 2009

Y1 - 2009

N2 - Background: The cell adhesion molecule pair neuroligin1 (Nlg1) and β-neurexin (β-NRX) is a powerful inducer of postsynaptic differentiation of glutamatergic synapses in vitro. Because Nlg1 induces accumulation of two essential components of the postsynaptic density (PSD) - PSD-95 and NMDA receptors (NMDARs) - and can physically bind PSD-95 and NMDARs at mature synapses, it has been proposed that Nlg1 recruits NMDARs to synapses through its interaction with PSD-95. However, PSD-95 and NMDARs are recruited to nascent synapses independently and it is not known if Nlg1 accumulates at synapses before these PSD proteins. Here, we investigate how a single type of cell adhesion molecule can recruit multiple types of synaptic proteins to new synapses with distinct mechanisms and time courses. Results: Nlg1 was present in young cortical neurons in two distinct pools before synaptogenesis, diffuse and clustered. Time-lapse imaging revealed that the diffuse Nlg1 aggregated at, and the clustered Nlg1 moved to, sites of axodendritic contact with a rapid time course. Using a patching assay that artificially induced clusters of Nlg, the time course and mechanisms of recruitment of PSD-95 and NMDARs to those Nlg clusters were characterized. Patching Nlg induced clustering of PSD-95 via a slow palmitoylation-dependent step. In contrast, NMDARs directly associated with clusters of Nlg1 during trafficking. Nlg1 and NMDARs were highly colocalized in dendrites before synaptogenesis and they became enriched with a similar time course at synapses with age. Patching of Nlg1 dramatically decreased the mobility of NMDAR transport packets. Finally, Nlg1 was biochemically associated with NMDAR transport packets, presumably through binding of NMDARs to MAGUK proteins that, in turn, bind Nlg1. This interaction was essential for colocalization and co-transport of Nlg1 with NMDARs. Conclusion: Our results suggest that axodendritic contact leads to rapid accumulation of Nlg1, recruitment of NMDARs co-transported with Nlg1 soon thereafter, followed by a slower, independent recruitment of PSD-95 to those nascent synapses.

AB - Background: The cell adhesion molecule pair neuroligin1 (Nlg1) and β-neurexin (β-NRX) is a powerful inducer of postsynaptic differentiation of glutamatergic synapses in vitro. Because Nlg1 induces accumulation of two essential components of the postsynaptic density (PSD) - PSD-95 and NMDA receptors (NMDARs) - and can physically bind PSD-95 and NMDARs at mature synapses, it has been proposed that Nlg1 recruits NMDARs to synapses through its interaction with PSD-95. However, PSD-95 and NMDARs are recruited to nascent synapses independently and it is not known if Nlg1 accumulates at synapses before these PSD proteins. Here, we investigate how a single type of cell adhesion molecule can recruit multiple types of synaptic proteins to new synapses with distinct mechanisms and time courses. Results: Nlg1 was present in young cortical neurons in two distinct pools before synaptogenesis, diffuse and clustered. Time-lapse imaging revealed that the diffuse Nlg1 aggregated at, and the clustered Nlg1 moved to, sites of axodendritic contact with a rapid time course. Using a patching assay that artificially induced clusters of Nlg, the time course and mechanisms of recruitment of PSD-95 and NMDARs to those Nlg clusters were characterized. Patching Nlg induced clustering of PSD-95 via a slow palmitoylation-dependent step. In contrast, NMDARs directly associated with clusters of Nlg1 during trafficking. Nlg1 and NMDARs were highly colocalized in dendrites before synaptogenesis and they became enriched with a similar time course at synapses with age. Patching of Nlg1 dramatically decreased the mobility of NMDAR transport packets. Finally, Nlg1 was biochemically associated with NMDAR transport packets, presumably through binding of NMDARs to MAGUK proteins that, in turn, bind Nlg1. This interaction was essential for colocalization and co-transport of Nlg1 with NMDARs. Conclusion: Our results suggest that axodendritic contact leads to rapid accumulation of Nlg1, recruitment of NMDARs co-transported with Nlg1 soon thereafter, followed by a slower, independent recruitment of PSD-95 to those nascent synapses.

UR - http://www.scopus.com/inward/record.url?scp=68049124955&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=68049124955&partnerID=8YFLogxK

U2 - 10.1186/1749-8104-4-17

DO - 10.1186/1749-8104-4-17

M3 - Article

C2 - 19450252

AN - SCOPUS:68049124955

VL - 4

JO - Neural Development

JF - Neural Development

SN - 1749-8104

IS - 1

M1 - 17

ER -