Nanomicelle formulation modifies the pharmacokinetic profiles and cardiac toxicity of daunorubicin

Hongyong Zhang, Yuanpei Li, Tzu-Yin Lin, Kai Xiao, Ashraf S. Haddad, Paul Henderson, Brian Jonas, Mingyi Chen, Wenwu Xiao, Ruiwu Liu, Kit Lam, Chong-Xian Pan

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Background: Treatment with daunorubicin (DNR) in acute myeloid leukemia is moderately effective and associated with significant side effects, including cardiac toxicity. We recently developed a nanomicellar formulation of DNR that specifically targets acute myeloid leukemia stem cells. Materials & methods: Pharmacokinetics analysis of free DNR, DNR in nanomicellar formulations was performed in Balb/c mice and Sprague - Dawley rats. Histochemical staining, caspase 3/7, troponin and creatine kinase MB isoenzyme were used to assess toxicity. Results: Compared with free DNR, the nanomicellar formulations of DNR had less cardiotoxicity as evidenced by milder histopathological changes, lower caspase 3/7 activity in heart tissue (p = 0.002), lower plasma creatine kinase MB isoenzyme (p = 0.002) and troponin concentrations (p = 0.001) postinjection. The area under curve concentration of DNR in micelles increased by 31.9-fold in mice (p < 0.0001) and 22.0-fold higher in rats (p < 0.001). Conclusion: Leukemia stem cell-targeting micelles dramatically change the pharmacokinetics and reduce the cardiac toxicity of DNR, which may enable improved DNR-based treatment of acute myeloid leukemia.

Original languageEnglish (US)
Pages (from-to)1807-1820
Number of pages14
JournalNanomedicine
Volume9
Issue number12
DOIs
StatePublished - Aug 1 2014

Keywords

  • Cardiotoxicity
  • Daunorubicin
  • Leukemia stem cells
  • Nanomicelles
  • Pharmacokinetics

ASJC Scopus subject areas

  • Materials Science(all)
  • Bioengineering
  • Biomedical Engineering
  • Medicine (miscellaneous)
  • Development

Fingerprint Dive into the research topics of 'Nanomicelle formulation modifies the pharmacokinetic profiles and cardiac toxicity of daunorubicin'. Together they form a unique fingerprint.

Cite this