Na-H exchange inhibition with cariporide limits functional impairment caused by repetitive ischemia

J. David Symons, Steven D. Correa, Saul Schaefer

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Intracellular calcium ([Ca]i) overload on reperfusion may be one of the mechanisms responsible for ischemia-induced regional myocardial dysfunction. Because inhibiting the Na-H exchanger (NHE) limits intracellular sodium ([Na]i) and subsequent [Ca]i accumulation, we hypothesized that NHE inhibition would attenuate regional dysfunction in response to 25 cycles of ischemia (I, 2-min) and reperfusion (R, 8-min) of the left circumflex coronary artery (LCx) in conscious swine. Six animals were instrumented to measure arterial pressure, regional myocardial blood flow (colored microspheres), systolic wall thickening (WTh) in the normally perfused (left anterior descending, LAD) and LCx regions (sonomicrometry), LCx blood flow velocity (Doppler), and to reversibly occlude the LCx (hydraulic occluder). Each animal completed three protocols separated by 7 days: ISC, 25 I/R cycles; CAR, 25 I/R cycles + NHE inhibition (cariporide); and VEH, vehicle administration for 4.2 h. Regional myocardial blood flow was measured during LCx occlusion in the first protocol and 10 min after I/R 25 in all protocols. Systemic hemodynamics were similar among and within each protocol. Blood flow measured during LCx occlusion confirmed that perfusion was reduced (p < 0.05) to this compared with the LAD region. During ISC, LCx WTh was reduced (p < 0.05) after five I/R cycles, and a stable reduction (≃55% of baseline; p < 0.05) was present after 20 I/R cycles. During CAR, LCx systolic WTh was reduced (p < 0.05) only after 15 and 25 I/R cycles (≃80 and 72%, respectively). The decrease in LCx WTh was greater in ISC than in CAR (p < 0.05). LCx WTh was not altered during VEH, while LAD WTh was similar within and among all protocols. Regional blood flow measured after 25 I/R cycles was not different among protocols. Our results indicate that NHE inhibition delays the onset and limits the degree of regional dysfunction in response to repeated bouts of ischemia and reperfusion.

Original languageEnglish (US)
Pages (from-to)853-862
Number of pages10
JournalJournal of Cardiovascular Pharmacology
Volume32
Issue number6
DOIs
StatePublished - Dec 1998

Fingerprint

Sodium-Hydrogen Antiporter
Regional Blood Flow
Ischemia
Reperfusion
Calcium
Blood Flow Velocity
Microspheres
Coronary Vessels
Arterial Pressure
Swine
Perfusion
Hemodynamics
Sodium
cariporide

Keywords

  • Cariporide
  • Conscious pigs
  • Intracellular calcium
  • Ischemia
  • Reperfusion

ASJC Scopus subject areas

  • Pharmacology
  • Cardiology and Cardiovascular Medicine

Cite this

Na-H exchange inhibition with cariporide limits functional impairment caused by repetitive ischemia. / Symons, J. David; Correa, Steven D.; Schaefer, Saul.

In: Journal of Cardiovascular Pharmacology, Vol. 32, No. 6, 12.1998, p. 853-862.

Research output: Contribution to journalArticle

@article{b3132ec75aef4a24a5122ced43eb11e6,
title = "Na-H exchange inhibition with cariporide limits functional impairment caused by repetitive ischemia",
abstract = "Intracellular calcium ([Ca]i) overload on reperfusion may be one of the mechanisms responsible for ischemia-induced regional myocardial dysfunction. Because inhibiting the Na-H exchanger (NHE) limits intracellular sodium ([Na]i) and subsequent [Ca]i accumulation, we hypothesized that NHE inhibition would attenuate regional dysfunction in response to 25 cycles of ischemia (I, 2-min) and reperfusion (R, 8-min) of the left circumflex coronary artery (LCx) in conscious swine. Six animals were instrumented to measure arterial pressure, regional myocardial blood flow (colored microspheres), systolic wall thickening (WTh) in the normally perfused (left anterior descending, LAD) and LCx regions (sonomicrometry), LCx blood flow velocity (Doppler), and to reversibly occlude the LCx (hydraulic occluder). Each animal completed three protocols separated by 7 days: ISC, 25 I/R cycles; CAR, 25 I/R cycles + NHE inhibition (cariporide); and VEH, vehicle administration for 4.2 h. Regional myocardial blood flow was measured during LCx occlusion in the first protocol and 10 min after I/R 25 in all protocols. Systemic hemodynamics were similar among and within each protocol. Blood flow measured during LCx occlusion confirmed that perfusion was reduced (p < 0.05) to this compared with the LAD region. During ISC, LCx WTh was reduced (p < 0.05) after five I/R cycles, and a stable reduction (≃55{\%} of baseline; p < 0.05) was present after 20 I/R cycles. During CAR, LCx systolic WTh was reduced (p < 0.05) only after 15 and 25 I/R cycles (≃80 and 72{\%}, respectively). The decrease in LCx WTh was greater in ISC than in CAR (p < 0.05). LCx WTh was not altered during VEH, while LAD WTh was similar within and among all protocols. Regional blood flow measured after 25 I/R cycles was not different among protocols. Our results indicate that NHE inhibition delays the onset and limits the degree of regional dysfunction in response to repeated bouts of ischemia and reperfusion.",
keywords = "Cariporide, Conscious pigs, Intracellular calcium, Ischemia, Reperfusion",
author = "Symons, {J. David} and Correa, {Steven D.} and Saul Schaefer",
year = "1998",
month = "12",
doi = "10.1097/00005344-199812000-00001",
language = "English (US)",
volume = "32",
pages = "853--862",
journal = "Journal of Cardiovascular Pharmacology",
issn = "0160-2446",
publisher = "Lippincott Williams and Wilkins",
number = "6",

}

TY - JOUR

T1 - Na-H exchange inhibition with cariporide limits functional impairment caused by repetitive ischemia

AU - Symons, J. David

AU - Correa, Steven D.

AU - Schaefer, Saul

PY - 1998/12

Y1 - 1998/12

N2 - Intracellular calcium ([Ca]i) overload on reperfusion may be one of the mechanisms responsible for ischemia-induced regional myocardial dysfunction. Because inhibiting the Na-H exchanger (NHE) limits intracellular sodium ([Na]i) and subsequent [Ca]i accumulation, we hypothesized that NHE inhibition would attenuate regional dysfunction in response to 25 cycles of ischemia (I, 2-min) and reperfusion (R, 8-min) of the left circumflex coronary artery (LCx) in conscious swine. Six animals were instrumented to measure arterial pressure, regional myocardial blood flow (colored microspheres), systolic wall thickening (WTh) in the normally perfused (left anterior descending, LAD) and LCx regions (sonomicrometry), LCx blood flow velocity (Doppler), and to reversibly occlude the LCx (hydraulic occluder). Each animal completed three protocols separated by 7 days: ISC, 25 I/R cycles; CAR, 25 I/R cycles + NHE inhibition (cariporide); and VEH, vehicle administration for 4.2 h. Regional myocardial blood flow was measured during LCx occlusion in the first protocol and 10 min after I/R 25 in all protocols. Systemic hemodynamics were similar among and within each protocol. Blood flow measured during LCx occlusion confirmed that perfusion was reduced (p < 0.05) to this compared with the LAD region. During ISC, LCx WTh was reduced (p < 0.05) after five I/R cycles, and a stable reduction (≃55% of baseline; p < 0.05) was present after 20 I/R cycles. During CAR, LCx systolic WTh was reduced (p < 0.05) only after 15 and 25 I/R cycles (≃80 and 72%, respectively). The decrease in LCx WTh was greater in ISC than in CAR (p < 0.05). LCx WTh was not altered during VEH, while LAD WTh was similar within and among all protocols. Regional blood flow measured after 25 I/R cycles was not different among protocols. Our results indicate that NHE inhibition delays the onset and limits the degree of regional dysfunction in response to repeated bouts of ischemia and reperfusion.

AB - Intracellular calcium ([Ca]i) overload on reperfusion may be one of the mechanisms responsible for ischemia-induced regional myocardial dysfunction. Because inhibiting the Na-H exchanger (NHE) limits intracellular sodium ([Na]i) and subsequent [Ca]i accumulation, we hypothesized that NHE inhibition would attenuate regional dysfunction in response to 25 cycles of ischemia (I, 2-min) and reperfusion (R, 8-min) of the left circumflex coronary artery (LCx) in conscious swine. Six animals were instrumented to measure arterial pressure, regional myocardial blood flow (colored microspheres), systolic wall thickening (WTh) in the normally perfused (left anterior descending, LAD) and LCx regions (sonomicrometry), LCx blood flow velocity (Doppler), and to reversibly occlude the LCx (hydraulic occluder). Each animal completed three protocols separated by 7 days: ISC, 25 I/R cycles; CAR, 25 I/R cycles + NHE inhibition (cariporide); and VEH, vehicle administration for 4.2 h. Regional myocardial blood flow was measured during LCx occlusion in the first protocol and 10 min after I/R 25 in all protocols. Systemic hemodynamics were similar among and within each protocol. Blood flow measured during LCx occlusion confirmed that perfusion was reduced (p < 0.05) to this compared with the LAD region. During ISC, LCx WTh was reduced (p < 0.05) after five I/R cycles, and a stable reduction (≃55% of baseline; p < 0.05) was present after 20 I/R cycles. During CAR, LCx systolic WTh was reduced (p < 0.05) only after 15 and 25 I/R cycles (≃80 and 72%, respectively). The decrease in LCx WTh was greater in ISC than in CAR (p < 0.05). LCx WTh was not altered during VEH, while LAD WTh was similar within and among all protocols. Regional blood flow measured after 25 I/R cycles was not different among protocols. Our results indicate that NHE inhibition delays the onset and limits the degree of regional dysfunction in response to repeated bouts of ischemia and reperfusion.

KW - Cariporide

KW - Conscious pigs

KW - Intracellular calcium

KW - Ischemia

KW - Reperfusion

UR - http://www.scopus.com/inward/record.url?scp=0031672232&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031672232&partnerID=8YFLogxK

U2 - 10.1097/00005344-199812000-00001

DO - 10.1097/00005344-199812000-00001

M3 - Article

C2 - 9869490

AN - SCOPUS:0031672232

VL - 32

SP - 853

EP - 862

JO - Journal of Cardiovascular Pharmacology

JF - Journal of Cardiovascular Pharmacology

SN - 0160-2446

IS - 6

ER -