Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle

Donald M Bers, José W M Bassani, Rosana A. Bassani

Research output: Contribution to journalArticle

99 Scopus citations

Abstract

There are four cellular Ca transport systems which compete to remove Ca from the myoplasm in mammalian ventricular myocytes. These are 1) the SR Ca-ATPase, 2) the sarcolemmal Na-Ca exchange, 3) the sarcolemmal Ca-ATPase and 4) the mitochondrial Ca uniporter. Using multiple experimental approaches we have evaluated the dynamic interaction of these systems during the normal cardiac contraction-relaxation cycle. The SR Ca-ATPase and Na-Ca exchange are clearly the most important, quantitatively; however, the relative roles vary in a species-dependent manner. In particular, the SR is much more strongly dominant in rat ventricular myocytes, where ~ 92% of Ca removal is via SR Ca-ATPase and only 7% via Na-Ca exchange during a twitch. In other species (rabbit, ferret, cat, and guinea pig) the balance is more in the range of 70% SR Ca-ATPase and 25-30% Na-Ca exchange. Ferret ventricular myocytes also exhibit an unusually strong sarcolemmal Ca-ATPase. During the steady state the same amount of Ca must leave the cell as enters over a cardiac cycle. This implies that 25-30% of the Ca required to activate contraction must enter the cell, and experiments demonstrate that this amount of Ca may be supplied by the L-type Ca current.

Original languageEnglish (US)
Pages (from-to)430-442
Number of pages13
JournalAnnals of the New York Academy of Sciences
Volume779
DOIs
StatePublished - 1996
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle'. Together they form a unique fingerprint.

  • Cite this