N-Glucuronidation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) and N-hydroxy-PhIP by specific human UDP-glucuronosyltransferases

M. A. Malfatti, J. S. Felton

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

Glucuronidation is a major metabolic pathway in the biotransformation of many xenobiotics. Recent studies have shown that in humans, UDP-glucuronosyltransferase (UGT)-mediated glucuronidation plays a critical role in the detoxification of food-borne carcinogenic heterocyclic amines. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most abundant carcinogenic heterocyclic amine found in well-cooked meats, has been shown to be extensively glucuronidated in humans. To determine which UGT isozymes are involved in the biotransformation of PhIP and the cytochrome P4501A2-mediated reactive intermediate N-hydroxy-PhIP, microsomes expressing human UGT1A1, -1A4, -1A6 or -1A9 were incubated with PhIP and N-hydroxy-PhIP and the reaction products analyzed by HPLC and ESI-MS. Incubations containing N-hydroxy-PhIP and UGT1A1 expressing microsomes, with an apparent Km of 4.58 μM and a Vmax of 4.18 pmol/min/mg protein, had the highest capacity to convert N-hydroxy-PhIP to N-hydroxy-PhIP-N2-glucuronide. Microsomes expressing UGT1A9 produced N-hydroxy-PhIP-N3-glucuronide at the highest rate with an apparent Km and Vmax of 3.73 μM and 4.07 pmol/min/mg, respectively. A third previously undefined glucuronide accounted for 31% of the total glucuronides formed from the UGT1A4 expressing microsomes. No glucuronide conjugates were detected from microsomes expressing UGT1A6. Incubations containing PhIP as substrate formed direct PhIP-glucuronides in microsomes expressing UGT1A1, UGT1A4 and UGT1A9 but at levels averaging 53-fold lower than when N-hydroxy-PhIP was used as the substrate. Knowing the glucuronidation capacity of the specific UGT isozymes involved in PhIP and N-hydroxy-PhIP glucuronidation should help in determining the individual susceptibility to the potential cancer risk from exposure to PhIP.

Original languageEnglish (US)
Pages (from-to)1087-1093
Number of pages7
JournalCarcinogenesis
Volume22
Issue number7
StatePublished - 2001
Externally publishedYes

Fingerprint

Glucuronosyltransferase
Glucuronides
Microsomes
2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine
Biotransformation
Isoenzymes
Amines
Xenobiotics
Cytochromes
Metabolic Networks and Pathways

ASJC Scopus subject areas

  • Cancer Research

Cite this

N-Glucuronidation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) and N-hydroxy-PhIP by specific human UDP-glucuronosyltransferases. / Malfatti, M. A.; Felton, J. S.

In: Carcinogenesis, Vol. 22, No. 7, 2001, p. 1087-1093.

Research output: Contribution to journalArticle

@article{6ef505b7989d4c2082f0c3c91bee041b,
title = "N-Glucuronidation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) and N-hydroxy-PhIP by specific human UDP-glucuronosyltransferases",
abstract = "Glucuronidation is a major metabolic pathway in the biotransformation of many xenobiotics. Recent studies have shown that in humans, UDP-glucuronosyltransferase (UGT)-mediated glucuronidation plays a critical role in the detoxification of food-borne carcinogenic heterocyclic amines. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most abundant carcinogenic heterocyclic amine found in well-cooked meats, has been shown to be extensively glucuronidated in humans. To determine which UGT isozymes are involved in the biotransformation of PhIP and the cytochrome P4501A2-mediated reactive intermediate N-hydroxy-PhIP, microsomes expressing human UGT1A1, -1A4, -1A6 or -1A9 were incubated with PhIP and N-hydroxy-PhIP and the reaction products analyzed by HPLC and ESI-MS. Incubations containing N-hydroxy-PhIP and UGT1A1 expressing microsomes, with an apparent Km of 4.58 μM and a Vmax of 4.18 pmol/min/mg protein, had the highest capacity to convert N-hydroxy-PhIP to N-hydroxy-PhIP-N2-glucuronide. Microsomes expressing UGT1A9 produced N-hydroxy-PhIP-N3-glucuronide at the highest rate with an apparent Km and Vmax of 3.73 μM and 4.07 pmol/min/mg, respectively. A third previously undefined glucuronide accounted for 31{\%} of the total glucuronides formed from the UGT1A4 expressing microsomes. No glucuronide conjugates were detected from microsomes expressing UGT1A6. Incubations containing PhIP as substrate formed direct PhIP-glucuronides in microsomes expressing UGT1A1, UGT1A4 and UGT1A9 but at levels averaging 53-fold lower than when N-hydroxy-PhIP was used as the substrate. Knowing the glucuronidation capacity of the specific UGT isozymes involved in PhIP and N-hydroxy-PhIP glucuronidation should help in determining the individual susceptibility to the potential cancer risk from exposure to PhIP.",
author = "Malfatti, {M. A.} and Felton, {J. S.}",
year = "2001",
language = "English (US)",
volume = "22",
pages = "1087--1093",
journal = "Carcinogenesis",
issn = "0143-3334",
publisher = "Oxford University Press",
number = "7",

}

TY - JOUR

T1 - N-Glucuronidation of 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) and N-hydroxy-PhIP by specific human UDP-glucuronosyltransferases

AU - Malfatti, M. A.

AU - Felton, J. S.

PY - 2001

Y1 - 2001

N2 - Glucuronidation is a major metabolic pathway in the biotransformation of many xenobiotics. Recent studies have shown that in humans, UDP-glucuronosyltransferase (UGT)-mediated glucuronidation plays a critical role in the detoxification of food-borne carcinogenic heterocyclic amines. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most abundant carcinogenic heterocyclic amine found in well-cooked meats, has been shown to be extensively glucuronidated in humans. To determine which UGT isozymes are involved in the biotransformation of PhIP and the cytochrome P4501A2-mediated reactive intermediate N-hydroxy-PhIP, microsomes expressing human UGT1A1, -1A4, -1A6 or -1A9 were incubated with PhIP and N-hydroxy-PhIP and the reaction products analyzed by HPLC and ESI-MS. Incubations containing N-hydroxy-PhIP and UGT1A1 expressing microsomes, with an apparent Km of 4.58 μM and a Vmax of 4.18 pmol/min/mg protein, had the highest capacity to convert N-hydroxy-PhIP to N-hydroxy-PhIP-N2-glucuronide. Microsomes expressing UGT1A9 produced N-hydroxy-PhIP-N3-glucuronide at the highest rate with an apparent Km and Vmax of 3.73 μM and 4.07 pmol/min/mg, respectively. A third previously undefined glucuronide accounted for 31% of the total glucuronides formed from the UGT1A4 expressing microsomes. No glucuronide conjugates were detected from microsomes expressing UGT1A6. Incubations containing PhIP as substrate formed direct PhIP-glucuronides in microsomes expressing UGT1A1, UGT1A4 and UGT1A9 but at levels averaging 53-fold lower than when N-hydroxy-PhIP was used as the substrate. Knowing the glucuronidation capacity of the specific UGT isozymes involved in PhIP and N-hydroxy-PhIP glucuronidation should help in determining the individual susceptibility to the potential cancer risk from exposure to PhIP.

AB - Glucuronidation is a major metabolic pathway in the biotransformation of many xenobiotics. Recent studies have shown that in humans, UDP-glucuronosyltransferase (UGT)-mediated glucuronidation plays a critical role in the detoxification of food-borne carcinogenic heterocyclic amines. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most abundant carcinogenic heterocyclic amine found in well-cooked meats, has been shown to be extensively glucuronidated in humans. To determine which UGT isozymes are involved in the biotransformation of PhIP and the cytochrome P4501A2-mediated reactive intermediate N-hydroxy-PhIP, microsomes expressing human UGT1A1, -1A4, -1A6 or -1A9 were incubated with PhIP and N-hydroxy-PhIP and the reaction products analyzed by HPLC and ESI-MS. Incubations containing N-hydroxy-PhIP and UGT1A1 expressing microsomes, with an apparent Km of 4.58 μM and a Vmax of 4.18 pmol/min/mg protein, had the highest capacity to convert N-hydroxy-PhIP to N-hydroxy-PhIP-N2-glucuronide. Microsomes expressing UGT1A9 produced N-hydroxy-PhIP-N3-glucuronide at the highest rate with an apparent Km and Vmax of 3.73 μM and 4.07 pmol/min/mg, respectively. A third previously undefined glucuronide accounted for 31% of the total glucuronides formed from the UGT1A4 expressing microsomes. No glucuronide conjugates were detected from microsomes expressing UGT1A6. Incubations containing PhIP as substrate formed direct PhIP-glucuronides in microsomes expressing UGT1A1, UGT1A4 and UGT1A9 but at levels averaging 53-fold lower than when N-hydroxy-PhIP was used as the substrate. Knowing the glucuronidation capacity of the specific UGT isozymes involved in PhIP and N-hydroxy-PhIP glucuronidation should help in determining the individual susceptibility to the potential cancer risk from exposure to PhIP.

UR - http://www.scopus.com/inward/record.url?scp=0034942927&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034942927&partnerID=8YFLogxK

M3 - Article

VL - 22

SP - 1087

EP - 1093

JO - Carcinogenesis

JF - Carcinogenesis

SN - 0143-3334

IS - 7

ER -