Mutant p53 cooperates with knockdown of endogenous wild-type p53 to disrupt tubulogenesis in Madin-Darby canine kidney cells

Yanhong Zhang, Wensheng Yan, Xinbin Chen

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Mutation of the p53 gene is the most common genetic alteration in human malignances and associated clinically with tumor progression and metastasis. To determine the effect of mutant p53 on epithelial differentiation, we developed three-dimensional culture (3-D) of Madin-Darby canine kidney (MDCK) cells. We found that parental MDCK cells undergo a series of morphological changes and form polarized and growth-arrested cysts with hollow lumen, which resembles branching tubules in vitro. We also found that upon knockdown of endogenous wild-type p53 (p53-KD), MDCK cells still form normal cysts in 3-D culture, indicating that p53-KD alone is not sufficient to disrupt cysts formation. However, we found that ectopic expression of mutant R163H (human equivalent R175H) or R261H (human equivalent R273H) in MDCK cells leads to disruption of cyst polarity and formation of invasive aggregates, which is further compounded by knockdown of endogenous wild-type p53. Consistently, we found that expression of E-cadherin, β-catenin, and epithelial-to-mesenchymal transition (EMT) transcription factors (Snail-1, Slug and Twist) is altered by mutant p53, which is also compounded by knockdown of wild-type p53. Moreover, the expression level of c-Met, the hepatocyte growth factor receptor and a key regulator of kidney cell tubulogenesis, is enhanced by combined knockdown of endogenous wild-type p53 and ectopic expression of mutant R163H or R261H but not by each individually. Together, our data suggest that upon inactivating mutation of the p53 gene, mutant p53 acquires its gain of function by altering morphogenesis and promoting cell migration and invasion in part by upregulating EMT and c-Met.

Original languageEnglish (US)
Article numbere85624
JournalPLoS One
Volume8
Issue number12
DOIs
StatePublished - Dec 27 2013

Fingerprint

Madin Darby Canine Kidney Cells
kidney cells
Cysts
Genes
Proto-Oncogene Proteins c-met
Catenins
mutants
Epithelial-Mesenchymal Transition
dogs
p53 Genes
Cadherins
Tumors
Transcription Factors
Mutation
Gastropoda
mutation
Morphogenesis
cell invasion
cadherins
slugs

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Mutant p53 cooperates with knockdown of endogenous wild-type p53 to disrupt tubulogenesis in Madin-Darby canine kidney cells. / Zhang, Yanhong; Yan, Wensheng; Chen, Xinbin.

In: PLoS One, Vol. 8, No. 12, e85624, 27.12.2013.

Research output: Contribution to journalArticle

@article{fd249741824045ac849aa52f36d3c1f3,
title = "Mutant p53 cooperates with knockdown of endogenous wild-type p53 to disrupt tubulogenesis in Madin-Darby canine kidney cells",
abstract = "Mutation of the p53 gene is the most common genetic alteration in human malignances and associated clinically with tumor progression and metastasis. To determine the effect of mutant p53 on epithelial differentiation, we developed three-dimensional culture (3-D) of Madin-Darby canine kidney (MDCK) cells. We found that parental MDCK cells undergo a series of morphological changes and form polarized and growth-arrested cysts with hollow lumen, which resembles branching tubules in vitro. We also found that upon knockdown of endogenous wild-type p53 (p53-KD), MDCK cells still form normal cysts in 3-D culture, indicating that p53-KD alone is not sufficient to disrupt cysts formation. However, we found that ectopic expression of mutant R163H (human equivalent R175H) or R261H (human equivalent R273H) in MDCK cells leads to disruption of cyst polarity and formation of invasive aggregates, which is further compounded by knockdown of endogenous wild-type p53. Consistently, we found that expression of E-cadherin, β-catenin, and epithelial-to-mesenchymal transition (EMT) transcription factors (Snail-1, Slug and Twist) is altered by mutant p53, which is also compounded by knockdown of wild-type p53. Moreover, the expression level of c-Met, the hepatocyte growth factor receptor and a key regulator of kidney cell tubulogenesis, is enhanced by combined knockdown of endogenous wild-type p53 and ectopic expression of mutant R163H or R261H but not by each individually. Together, our data suggest that upon inactivating mutation of the p53 gene, mutant p53 acquires its gain of function by altering morphogenesis and promoting cell migration and invasion in part by upregulating EMT and c-Met.",
author = "Yanhong Zhang and Wensheng Yan and Xinbin Chen",
year = "2013",
month = "12",
day = "27",
doi = "10.1371/journal.pone.0085624",
language = "English (US)",
volume = "8",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "12",

}

TY - JOUR

T1 - Mutant p53 cooperates with knockdown of endogenous wild-type p53 to disrupt tubulogenesis in Madin-Darby canine kidney cells

AU - Zhang, Yanhong

AU - Yan, Wensheng

AU - Chen, Xinbin

PY - 2013/12/27

Y1 - 2013/12/27

N2 - Mutation of the p53 gene is the most common genetic alteration in human malignances and associated clinically with tumor progression and metastasis. To determine the effect of mutant p53 on epithelial differentiation, we developed three-dimensional culture (3-D) of Madin-Darby canine kidney (MDCK) cells. We found that parental MDCK cells undergo a series of morphological changes and form polarized and growth-arrested cysts with hollow lumen, which resembles branching tubules in vitro. We also found that upon knockdown of endogenous wild-type p53 (p53-KD), MDCK cells still form normal cysts in 3-D culture, indicating that p53-KD alone is not sufficient to disrupt cysts formation. However, we found that ectopic expression of mutant R163H (human equivalent R175H) or R261H (human equivalent R273H) in MDCK cells leads to disruption of cyst polarity and formation of invasive aggregates, which is further compounded by knockdown of endogenous wild-type p53. Consistently, we found that expression of E-cadherin, β-catenin, and epithelial-to-mesenchymal transition (EMT) transcription factors (Snail-1, Slug and Twist) is altered by mutant p53, which is also compounded by knockdown of wild-type p53. Moreover, the expression level of c-Met, the hepatocyte growth factor receptor and a key regulator of kidney cell tubulogenesis, is enhanced by combined knockdown of endogenous wild-type p53 and ectopic expression of mutant R163H or R261H but not by each individually. Together, our data suggest that upon inactivating mutation of the p53 gene, mutant p53 acquires its gain of function by altering morphogenesis and promoting cell migration and invasion in part by upregulating EMT and c-Met.

AB - Mutation of the p53 gene is the most common genetic alteration in human malignances and associated clinically with tumor progression and metastasis. To determine the effect of mutant p53 on epithelial differentiation, we developed three-dimensional culture (3-D) of Madin-Darby canine kidney (MDCK) cells. We found that parental MDCK cells undergo a series of morphological changes and form polarized and growth-arrested cysts with hollow lumen, which resembles branching tubules in vitro. We also found that upon knockdown of endogenous wild-type p53 (p53-KD), MDCK cells still form normal cysts in 3-D culture, indicating that p53-KD alone is not sufficient to disrupt cysts formation. However, we found that ectopic expression of mutant R163H (human equivalent R175H) or R261H (human equivalent R273H) in MDCK cells leads to disruption of cyst polarity and formation of invasive aggregates, which is further compounded by knockdown of endogenous wild-type p53. Consistently, we found that expression of E-cadherin, β-catenin, and epithelial-to-mesenchymal transition (EMT) transcription factors (Snail-1, Slug and Twist) is altered by mutant p53, which is also compounded by knockdown of wild-type p53. Moreover, the expression level of c-Met, the hepatocyte growth factor receptor and a key regulator of kidney cell tubulogenesis, is enhanced by combined knockdown of endogenous wild-type p53 and ectopic expression of mutant R163H or R261H but not by each individually. Together, our data suggest that upon inactivating mutation of the p53 gene, mutant p53 acquires its gain of function by altering morphogenesis and promoting cell migration and invasion in part by upregulating EMT and c-Met.

UR - http://www.scopus.com/inward/record.url?scp=84893624154&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84893624154&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0085624

DO - 10.1371/journal.pone.0085624

M3 - Article

C2 - 24386484

AN - SCOPUS:84893624154

VL - 8

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 12

M1 - e85624

ER -