TY - JOUR
T1 - Multifunctionality of Campylobacter jejuni sialyltransferase CstII
T2 - Characterization of GD3/GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities
AU - Cheng, Jiansong
AU - Yu, Hai
AU - Lau, Kam
AU - Huang, Shengshu
AU - Chokhawala, Harshal A.
AU - Li, Yanhong
AU - Tiwari, Vinod Kumar
AU - Chen, Xi
PY - 2008
Y1 - 2008
N2 - CstII from bacterium Campylobacter jejuni strain OH4384 has been previously characterized as a bifunctional sialyltransferase having both α2,3-sialyltransferase (GM3 oligosaccharide synthase) and α2,8-sialyltransferase (GD3 oligosaccharide synthase) activities which catalyze the transfer of N-acetylneuraminic acid (Neu5Ac) from cytidine 5′-monophosphate (CMP)-Neu5Ac to C-3′ of the galactose in lactose and to C-8 of the Neu5Ac in 3′-sialyllactose, respectively (Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J, Cunningham AM, Wakarchuk WW. 2002. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem. 277:327-337). We report here the characterization of a truncated CstII mutant (CstIIΔ32I53S) cloned from a synthetic gene whose codons are optimized for an Escherichia coli expression system. In addition to the α2,3- and α2,8-sialyltransferase activities reported before for the synthesis of GM3- and GD3-type oligosaccharides, respectively, the CstIIΔ32I53S has α2,8-sialyltransferase (GT3 oligosaccharide synthase) activity for the synthesis of GT3 oligosaccharide. It also has α2,8-sialidase (GD3 oligosaccharide sialidase) activity that catalyzes the specific cleavage of the α2,8-sialyl linkage of GD3-type oligosaccharides and α2,8-trans-sialidase (GD3 oligosaccharide trans-sialidase) activity that catalyzes the transfer of a sialic acid from a GD3 oligosaccharide to a different GM3 oligosaccharide (3′-sialyllactoside). The donor substrate specificity study of the CstIIΔ32I53S GD3 oligosaccharide synthase activity indicates that the enzyme is flexible in using different CMP-activated sialic acids and their analogs for the synthesis of GD3 oligosaccharides containing natural and nonnatural modifications at the terminal sialic acid.
AB - CstII from bacterium Campylobacter jejuni strain OH4384 has been previously characterized as a bifunctional sialyltransferase having both α2,3-sialyltransferase (GM3 oligosaccharide synthase) and α2,8-sialyltransferase (GD3 oligosaccharide synthase) activities which catalyze the transfer of N-acetylneuraminic acid (Neu5Ac) from cytidine 5′-monophosphate (CMP)-Neu5Ac to C-3′ of the galactose in lactose and to C-8 of the Neu5Ac in 3′-sialyllactose, respectively (Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J, Cunningham AM, Wakarchuk WW. 2002. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem. 277:327-337). We report here the characterization of a truncated CstII mutant (CstIIΔ32I53S) cloned from a synthetic gene whose codons are optimized for an Escherichia coli expression system. In addition to the α2,3- and α2,8-sialyltransferase activities reported before for the synthesis of GM3- and GD3-type oligosaccharides, respectively, the CstIIΔ32I53S has α2,8-sialyltransferase (GT3 oligosaccharide synthase) activity for the synthesis of GT3 oligosaccharide. It also has α2,8-sialidase (GD3 oligosaccharide sialidase) activity that catalyzes the specific cleavage of the α2,8-sialyl linkage of GD3-type oligosaccharides and α2,8-trans-sialidase (GD3 oligosaccharide trans-sialidase) activity that catalyzes the transfer of a sialic acid from a GD3 oligosaccharide to a different GM3 oligosaccharide (3′-sialyllactoside). The donor substrate specificity study of the CstIIΔ32I53S GD3 oligosaccharide synthase activity indicates that the enzyme is flexible in using different CMP-activated sialic acids and their analogs for the synthesis of GD3 oligosaccharides containing natural and nonnatural modifications at the terminal sialic acid.
KW - CstII
KW - Ganglioside
KW - Sialidase
KW - Sialyltransferase
KW - Trans-sialidase
UR - http://www.scopus.com/inward/record.url?scp=58249104082&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=58249104082&partnerID=8YFLogxK
U2 - 10.1093/glycob/cwn047
DO - 10.1093/glycob/cwn047
M3 - Article
C2 - 18509108
AN - SCOPUS:58249104082
VL - 18
SP - 686
EP - 697
JO - Glycobiology
JF - Glycobiology
SN - 0959-6658
IS - 9
ER -