Multidrug residues and antimicrobial resistance patterns in waste milk from dairy farms in Central California

P. N. Tempini, Sharif S Aly, B. M. Karle, Richard Van Vleck Pereira

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Waste milk (WM) is a common source of feed for preweaned calves in US dairy farms. However, limited information is available about characteristics of this product, including concentration of drug residues and potential hazards from antibiotic-resistant bacteria present in the milk. The aims of this cross-sectional study were to (1) identify and measure the concentration of antimicrobial residues in raw WM samples on dairy farms in the Central Valley of California, (2) survey farm management practices for factors associated with the occurrence of specific antimicrobial residues in raw WM, (3) characterize the antimicrobial resistance patterns of E. coli cultured from raw WM samples, and (4) evaluate the potential association between WM quality parameter and risk of identifying drug residues in milk. A single raw bulk tank WM sample was collected from dairy farms located in California's Central Valley (n = 25). A questionnaire was used to collect information about farm management practices. Waste milk samples were analyzed for a multidrug residue panel using liquid chromatography–tandem mass spectrometry. Bacteria were cultured and antimicrobial resistance was tested using standard techniques; milk quality parameters (fat, protein, lactose, solids-not-fat, somatic cell count, coliform count, and standard plate count) were also measured. Of the 25 samples collected, 15 (60%) contained detectable concentrations of at least 1 antimicrobial. Of the drug residue–positive samples, 44% (11/25) and 16% (4/25) had detectable concentrations of β-lactams and tetracycline, respectively. The most prevalent drug residues were ceftiofur (n = 7, 28%), oxytetracycline (n = 4, 16%), and cephapirin (n = 3, 12%). No significant associations were identified between farm characteristics or management practices and presence of drug residues in WM. In this study, 20% of farms did not pasteurize WM before feeding to calves. Two of the 10 Escherichia coli isolated from WM samples were multidrug resistant. Streptococcus spp. (n = 21, 84%) was the most common genus cultured from WM samples, followed by Staphylococcus spp. (n = 20, 80%) and E. coli (n = 10, 40%). Mycoplasma spp. was cultured from 2 WM samples (n = 2, 8%). The presence of drug residues in WM at concentrations that increase selection of resistant bacteria indicates the need for additional studies targeting on-farm milk treatments to degrade drug residues before feeding to calves. The presence of multidrug-resistant E. coli in WM urges the need for on-farm practices that reduce calf exposure to resistant bacteria, such as pasteurization.

Original languageEnglish (US)
JournalJournal of Dairy Science
DOIs
StateAccepted/In press - Jan 1 2018

Fingerprint

antibiotic resistance
dairy farming
Milk
milk
Drug Residues
drug residues
Practice Management
sampling
calves
Escherichia coli
Central Valley of California
farms
Bacteria
Farms
anti-infective agents
milk quality
farm management
bacteria
cephapirin
Cephapirin

Keywords

  • antibiotic resistance
  • ceftiofur
  • drug residue
  • waste milk

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics

Cite this

@article{de3e92ced9bc4fb5a84b3f00fedf69a6,
title = "Multidrug residues and antimicrobial resistance patterns in waste milk from dairy farms in Central California",
abstract = "Waste milk (WM) is a common source of feed for preweaned calves in US dairy farms. However, limited information is available about characteristics of this product, including concentration of drug residues and potential hazards from antibiotic-resistant bacteria present in the milk. The aims of this cross-sectional study were to (1) identify and measure the concentration of antimicrobial residues in raw WM samples on dairy farms in the Central Valley of California, (2) survey farm management practices for factors associated with the occurrence of specific antimicrobial residues in raw WM, (3) characterize the antimicrobial resistance patterns of E. coli cultured from raw WM samples, and (4) evaluate the potential association between WM quality parameter and risk of identifying drug residues in milk. A single raw bulk tank WM sample was collected from dairy farms located in California's Central Valley (n = 25). A questionnaire was used to collect information about farm management practices. Waste milk samples were analyzed for a multidrug residue panel using liquid chromatography–tandem mass spectrometry. Bacteria were cultured and antimicrobial resistance was tested using standard techniques; milk quality parameters (fat, protein, lactose, solids-not-fat, somatic cell count, coliform count, and standard plate count) were also measured. Of the 25 samples collected, 15 (60{\%}) contained detectable concentrations of at least 1 antimicrobial. Of the drug residue–positive samples, 44{\%} (11/25) and 16{\%} (4/25) had detectable concentrations of β-lactams and tetracycline, respectively. The most prevalent drug residues were ceftiofur (n = 7, 28{\%}), oxytetracycline (n = 4, 16{\%}), and cephapirin (n = 3, 12{\%}). No significant associations were identified between farm characteristics or management practices and presence of drug residues in WM. In this study, 20{\%} of farms did not pasteurize WM before feeding to calves. Two of the 10 Escherichia coli isolated from WM samples were multidrug resistant. Streptococcus spp. (n = 21, 84{\%}) was the most common genus cultured from WM samples, followed by Staphylococcus spp. (n = 20, 80{\%}) and E. coli (n = 10, 40{\%}). Mycoplasma spp. was cultured from 2 WM samples (n = 2, 8{\%}). The presence of drug residues in WM at concentrations that increase selection of resistant bacteria indicates the need for additional studies targeting on-farm milk treatments to degrade drug residues before feeding to calves. The presence of multidrug-resistant E. coli in WM urges the need for on-farm practices that reduce calf exposure to resistant bacteria, such as pasteurization.",
keywords = "antibiotic resistance, ceftiofur, drug residue, waste milk",
author = "Tempini, {P. N.} and Aly, {Sharif S} and Karle, {B. M.} and Pereira, {Richard Van Vleck}",
year = "2018",
month = "1",
day = "1",
doi = "10.3168/jds.2018-14398",
language = "English (US)",
journal = "Journal of Dairy Science",
issn = "0022-0302",
publisher = "Elsevier Limited",

}

TY - JOUR

T1 - Multidrug residues and antimicrobial resistance patterns in waste milk from dairy farms in Central California

AU - Tempini, P. N.

AU - Aly, Sharif S

AU - Karle, B. M.

AU - Pereira, Richard Van Vleck

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Waste milk (WM) is a common source of feed for preweaned calves in US dairy farms. However, limited information is available about characteristics of this product, including concentration of drug residues and potential hazards from antibiotic-resistant bacteria present in the milk. The aims of this cross-sectional study were to (1) identify and measure the concentration of antimicrobial residues in raw WM samples on dairy farms in the Central Valley of California, (2) survey farm management practices for factors associated with the occurrence of specific antimicrobial residues in raw WM, (3) characterize the antimicrobial resistance patterns of E. coli cultured from raw WM samples, and (4) evaluate the potential association between WM quality parameter and risk of identifying drug residues in milk. A single raw bulk tank WM sample was collected from dairy farms located in California's Central Valley (n = 25). A questionnaire was used to collect information about farm management practices. Waste milk samples were analyzed for a multidrug residue panel using liquid chromatography–tandem mass spectrometry. Bacteria were cultured and antimicrobial resistance was tested using standard techniques; milk quality parameters (fat, protein, lactose, solids-not-fat, somatic cell count, coliform count, and standard plate count) were also measured. Of the 25 samples collected, 15 (60%) contained detectable concentrations of at least 1 antimicrobial. Of the drug residue–positive samples, 44% (11/25) and 16% (4/25) had detectable concentrations of β-lactams and tetracycline, respectively. The most prevalent drug residues were ceftiofur (n = 7, 28%), oxytetracycline (n = 4, 16%), and cephapirin (n = 3, 12%). No significant associations were identified between farm characteristics or management practices and presence of drug residues in WM. In this study, 20% of farms did not pasteurize WM before feeding to calves. Two of the 10 Escherichia coli isolated from WM samples were multidrug resistant. Streptococcus spp. (n = 21, 84%) was the most common genus cultured from WM samples, followed by Staphylococcus spp. (n = 20, 80%) and E. coli (n = 10, 40%). Mycoplasma spp. was cultured from 2 WM samples (n = 2, 8%). The presence of drug residues in WM at concentrations that increase selection of resistant bacteria indicates the need for additional studies targeting on-farm milk treatments to degrade drug residues before feeding to calves. The presence of multidrug-resistant E. coli in WM urges the need for on-farm practices that reduce calf exposure to resistant bacteria, such as pasteurization.

AB - Waste milk (WM) is a common source of feed for preweaned calves in US dairy farms. However, limited information is available about characteristics of this product, including concentration of drug residues and potential hazards from antibiotic-resistant bacteria present in the milk. The aims of this cross-sectional study were to (1) identify and measure the concentration of antimicrobial residues in raw WM samples on dairy farms in the Central Valley of California, (2) survey farm management practices for factors associated with the occurrence of specific antimicrobial residues in raw WM, (3) characterize the antimicrobial resistance patterns of E. coli cultured from raw WM samples, and (4) evaluate the potential association between WM quality parameter and risk of identifying drug residues in milk. A single raw bulk tank WM sample was collected from dairy farms located in California's Central Valley (n = 25). A questionnaire was used to collect information about farm management practices. Waste milk samples were analyzed for a multidrug residue panel using liquid chromatography–tandem mass spectrometry. Bacteria were cultured and antimicrobial resistance was tested using standard techniques; milk quality parameters (fat, protein, lactose, solids-not-fat, somatic cell count, coliform count, and standard plate count) were also measured. Of the 25 samples collected, 15 (60%) contained detectable concentrations of at least 1 antimicrobial. Of the drug residue–positive samples, 44% (11/25) and 16% (4/25) had detectable concentrations of β-lactams and tetracycline, respectively. The most prevalent drug residues were ceftiofur (n = 7, 28%), oxytetracycline (n = 4, 16%), and cephapirin (n = 3, 12%). No significant associations were identified between farm characteristics or management practices and presence of drug residues in WM. In this study, 20% of farms did not pasteurize WM before feeding to calves. Two of the 10 Escherichia coli isolated from WM samples were multidrug resistant. Streptococcus spp. (n = 21, 84%) was the most common genus cultured from WM samples, followed by Staphylococcus spp. (n = 20, 80%) and E. coli (n = 10, 40%). Mycoplasma spp. was cultured from 2 WM samples (n = 2, 8%). The presence of drug residues in WM at concentrations that increase selection of resistant bacteria indicates the need for additional studies targeting on-farm milk treatments to degrade drug residues before feeding to calves. The presence of multidrug-resistant E. coli in WM urges the need for on-farm practices that reduce calf exposure to resistant bacteria, such as pasteurization.

KW - antibiotic resistance

KW - ceftiofur

KW - drug residue

KW - waste milk

UR - http://www.scopus.com/inward/record.url?scp=85049344964&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049344964&partnerID=8YFLogxK

U2 - 10.3168/jds.2018-14398

DO - 10.3168/jds.2018-14398

M3 - Article

C2 - 30126599

AN - SCOPUS:85049344964

JO - Journal of Dairy Science

JF - Journal of Dairy Science

SN - 0022-0302

ER -