MRI non-uniformity correction through interleaved bias estimation and B-spline deformation with a template.

E. Fletcher, O. Carmichael, Charles DeCarli

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint Dive into the research topics of 'MRI non-uniformity correction through interleaved bias estimation and B-spline deformation with a template.'. Together they form a unique fingerprint.

  • Cite this