Momentopes, the complexity of vector partitioning, and davenport-schinzel sequences

Research output: Contribution to journalArticlepeer-review

8 Scopus citations


The computational complexity of the partition problem, which concerns the partitioning of a set of n vectors in d-space into p parts so as to maximize an objective function which is convex on the sum of vectors in each part, is determined by the number of vertices of the corresponding p-partition polytope defined to be the convex hull in (d × p)-space of all solutions. In this article, introducing and using the class of Momentopes, we establish the lower bound vp,d(n) = ω(n[(d-1)/2]p) on the maximum number of vertices of any p-partition polytope of a set of n points in d-space, which is quite compatible with the recent upper bound vp,d(n) = O(nd(p-1)-1), implying the same bound on the complexity of the partition problem. We also discuss related problems on the realizability of Davenport-Schinzel sequences and describe some further properties of Momentopes.

Original languageEnglish (US)
Pages (from-to)409-417
Number of pages9
JournalDiscrete and Computational Geometry
Issue number3
StatePublished - Jan 1 2002

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Geometry and Topology
  • Discrete Mathematics and Combinatorics
  • Computational Theory and Mathematics


Dive into the research topics of 'Momentopes, the complexity of vector partitioning, and davenport-schinzel sequences'. Together they form a unique fingerprint.

Cite this