Modeling the National Ignition Facility neutron imaging system

D. C. Wilson, G. P. Grim, I. L. Tregillis, M. D. Wilke, M. V. Patel, S. M. Sepke, G. L. Morgan, R. Hatarik, E. N. Loomis, C. H. Wilde, J. A. Oertel, V. E. Fatherley, D. D. Clark, D. N. Fittinghoff, D. E. Bower, M. J. Schmitt, M. M. Marinak, D. H. Munro, F. E. Merrill, M. J. MoranT. S.F. Wang, C. R. Danly, R. A. Hilko, S. H. Batha, Matthias Frank, R. Buckles

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Numerical modeling of the neutron imaging system for the National Ignition Facility (NIF), forward from calculated target neutron emission to a camera image, will guide both the reduction of data and the future development of the system. Located 28 m from target chamber center, the system can produce two images at different neutron energies by gating on neutron arrival time. The brighter image, using neutrons near 14 MeV, reflects the size and symmetry of the implosion "hot spot." A second image in scattered neutrons, 10-12 MeV, reflects the size and symmetry of colder, denser fuel, but with only ∼1%-7% of the neutrons. A misalignment of the pinhole assembly up to ±175 μm is covered by a set of 37 subapertures with different pointings. The model includes the variability of the pinhole point spread function across the field of view. Omega experiments provided absolute calibration, scintillator spatial broadening, and the level of residual light in the down-scattered image from the primary neutrons. Application of the model to light decay measurements of EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A suggests that DPAC-30 and Liquid A would be preferred over the BCF99-55 scintillator chosen for the first NIF system, if they could be fabricated into detectors with sufficient resolution.

Original languageEnglish (US)
Article number10D335
JournalReview of Scientific Instruments
Volume81
Issue number10
DOIs
StatePublished - Oct 1 2010
Externally publishedYes

Fingerprint

Imaging systems
ignition
Ignition
Neutrons
neutrons
pinholes
Phosphors
scintillation counters
Neutron emission
neutron emission
implosions
Optical transfer function
Liquids
xylene
symmetry
Xylene
point spread functions
liquids
misalignment
field of view

ASJC Scopus subject areas

  • Instrumentation

Cite this

Wilson, D. C., Grim, G. P., Tregillis, I. L., Wilke, M. D., Patel, M. V., Sepke, S. M., ... Buckles, R. (2010). Modeling the National Ignition Facility neutron imaging system. Review of Scientific Instruments, 81(10), [10D335]. https://doi.org/10.1063/1.3496993

Modeling the National Ignition Facility neutron imaging system. / Wilson, D. C.; Grim, G. P.; Tregillis, I. L.; Wilke, M. D.; Patel, M. V.; Sepke, S. M.; Morgan, G. L.; Hatarik, R.; Loomis, E. N.; Wilde, C. H.; Oertel, J. A.; Fatherley, V. E.; Clark, D. D.; Fittinghoff, D. N.; Bower, D. E.; Schmitt, M. J.; Marinak, M. M.; Munro, D. H.; Merrill, F. E.; Moran, M. J.; Wang, T. S.F.; Danly, C. R.; Hilko, R. A.; Batha, S. H.; Frank, Matthias; Buckles, R.

In: Review of Scientific Instruments, Vol. 81, No. 10, 10D335, 01.10.2010.

Research output: Contribution to journalArticle

Wilson, DC, Grim, GP, Tregillis, IL, Wilke, MD, Patel, MV, Sepke, SM, Morgan, GL, Hatarik, R, Loomis, EN, Wilde, CH, Oertel, JA, Fatherley, VE, Clark, DD, Fittinghoff, DN, Bower, DE, Schmitt, MJ, Marinak, MM, Munro, DH, Merrill, FE, Moran, MJ, Wang, TSF, Danly, CR, Hilko, RA, Batha, SH, Frank, M & Buckles, R 2010, 'Modeling the National Ignition Facility neutron imaging system', Review of Scientific Instruments, vol. 81, no. 10, 10D335. https://doi.org/10.1063/1.3496993
Wilson DC, Grim GP, Tregillis IL, Wilke MD, Patel MV, Sepke SM et al. Modeling the National Ignition Facility neutron imaging system. Review of Scientific Instruments. 2010 Oct 1;81(10). 10D335. https://doi.org/10.1063/1.3496993
Wilson, D. C. ; Grim, G. P. ; Tregillis, I. L. ; Wilke, M. D. ; Patel, M. V. ; Sepke, S. M. ; Morgan, G. L. ; Hatarik, R. ; Loomis, E. N. ; Wilde, C. H. ; Oertel, J. A. ; Fatherley, V. E. ; Clark, D. D. ; Fittinghoff, D. N. ; Bower, D. E. ; Schmitt, M. J. ; Marinak, M. M. ; Munro, D. H. ; Merrill, F. E. ; Moran, M. J. ; Wang, T. S.F. ; Danly, C. R. ; Hilko, R. A. ; Batha, S. H. ; Frank, Matthias ; Buckles, R. / Modeling the National Ignition Facility neutron imaging system. In: Review of Scientific Instruments. 2010 ; Vol. 81, No. 10.
@article{823c4bef81744a678484f1e0980ffa72,
title = "Modeling the National Ignition Facility neutron imaging system",
abstract = "Numerical modeling of the neutron imaging system for the National Ignition Facility (NIF), forward from calculated target neutron emission to a camera image, will guide both the reduction of data and the future development of the system. Located 28 m from target chamber center, the system can produce two images at different neutron energies by gating on neutron arrival time. The brighter image, using neutrons near 14 MeV, reflects the size and symmetry of the implosion {"}hot spot.{"} A second image in scattered neutrons, 10-12 MeV, reflects the size and symmetry of colder, denser fuel, but with only ∼1{\%}-7{\%} of the neutrons. A misalignment of the pinhole assembly up to ±175 μm is covered by a set of 37 subapertures with different pointings. The model includes the variability of the pinhole point spread function across the field of view. Omega experiments provided absolute calibration, scintillator spatial broadening, and the level of residual light in the down-scattered image from the primary neutrons. Application of the model to light decay measurements of EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A suggests that DPAC-30 and Liquid A would be preferred over the BCF99-55 scintillator chosen for the first NIF system, if they could be fabricated into detectors with sufficient resolution.",
author = "Wilson, {D. C.} and Grim, {G. P.} and Tregillis, {I. L.} and Wilke, {M. D.} and Patel, {M. V.} and Sepke, {S. M.} and Morgan, {G. L.} and R. Hatarik and Loomis, {E. N.} and Wilde, {C. H.} and Oertel, {J. A.} and Fatherley, {V. E.} and Clark, {D. D.} and Fittinghoff, {D. N.} and Bower, {D. E.} and Schmitt, {M. J.} and Marinak, {M. M.} and Munro, {D. H.} and Merrill, {F. E.} and Moran, {M. J.} and Wang, {T. S.F.} and Danly, {C. R.} and Hilko, {R. A.} and Batha, {S. H.} and Matthias Frank and R. Buckles",
year = "2010",
month = "10",
day = "1",
doi = "10.1063/1.3496993",
language = "English (US)",
volume = "81",
journal = "Review of Scientific Instruments",
issn = "0034-6748",
publisher = "American Institute of Physics Publising LLC",
number = "10",

}

TY - JOUR

T1 - Modeling the National Ignition Facility neutron imaging system

AU - Wilson, D. C.

AU - Grim, G. P.

AU - Tregillis, I. L.

AU - Wilke, M. D.

AU - Patel, M. V.

AU - Sepke, S. M.

AU - Morgan, G. L.

AU - Hatarik, R.

AU - Loomis, E. N.

AU - Wilde, C. H.

AU - Oertel, J. A.

AU - Fatherley, V. E.

AU - Clark, D. D.

AU - Fittinghoff, D. N.

AU - Bower, D. E.

AU - Schmitt, M. J.

AU - Marinak, M. M.

AU - Munro, D. H.

AU - Merrill, F. E.

AU - Moran, M. J.

AU - Wang, T. S.F.

AU - Danly, C. R.

AU - Hilko, R. A.

AU - Batha, S. H.

AU - Frank, Matthias

AU - Buckles, R.

PY - 2010/10/1

Y1 - 2010/10/1

N2 - Numerical modeling of the neutron imaging system for the National Ignition Facility (NIF), forward from calculated target neutron emission to a camera image, will guide both the reduction of data and the future development of the system. Located 28 m from target chamber center, the system can produce two images at different neutron energies by gating on neutron arrival time. The brighter image, using neutrons near 14 MeV, reflects the size and symmetry of the implosion "hot spot." A second image in scattered neutrons, 10-12 MeV, reflects the size and symmetry of colder, denser fuel, but with only ∼1%-7% of the neutrons. A misalignment of the pinhole assembly up to ±175 μm is covered by a set of 37 subapertures with different pointings. The model includes the variability of the pinhole point spread function across the field of view. Omega experiments provided absolute calibration, scintillator spatial broadening, and the level of residual light in the down-scattered image from the primary neutrons. Application of the model to light decay measurements of EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A suggests that DPAC-30 and Liquid A would be preferred over the BCF99-55 scintillator chosen for the first NIF system, if they could be fabricated into detectors with sufficient resolution.

AB - Numerical modeling of the neutron imaging system for the National Ignition Facility (NIF), forward from calculated target neutron emission to a camera image, will guide both the reduction of data and the future development of the system. Located 28 m from target chamber center, the system can produce two images at different neutron energies by gating on neutron arrival time. The brighter image, using neutrons near 14 MeV, reflects the size and symmetry of the implosion "hot spot." A second image in scattered neutrons, 10-12 MeV, reflects the size and symmetry of colder, denser fuel, but with only ∼1%-7% of the neutrons. A misalignment of the pinhole assembly up to ±175 μm is covered by a set of 37 subapertures with different pointings. The model includes the variability of the pinhole point spread function across the field of view. Omega experiments provided absolute calibration, scintillator spatial broadening, and the level of residual light in the down-scattered image from the primary neutrons. Application of the model to light decay measurements of EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A suggests that DPAC-30 and Liquid A would be preferred over the BCF99-55 scintillator chosen for the first NIF system, if they could be fabricated into detectors with sufficient resolution.

UR - http://www.scopus.com/inward/record.url?scp=78149456709&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78149456709&partnerID=8YFLogxK

U2 - 10.1063/1.3496993

DO - 10.1063/1.3496993

M3 - Article

C2 - 21033855

AN - SCOPUS:78149456709

VL - 81

JO - Review of Scientific Instruments

JF - Review of Scientific Instruments

SN - 0034-6748

IS - 10

M1 - 10D335

ER -