Model for cryogenic particle detectors with superconducting phase transition thermometers

F. Pröbst, Matthias Frank, S. Cooper, P. Colling, D. Dummer, P. Ferger, G. Forster, A. Nucciotti, W. Seidel, L. Stodolsky

Research output: Contribution to journalArticle

86 Scopus citations

Abstract

We present data on a detector composed of an 18 g Si crystal and a superconducting phase transition thermometer which could be operated over a wide temperature range. An energy resolution of 1 ke V (FWHM) has been obtained for 60 keV photons. The signals consist of two components: a fast one and a slow one, with decay times of 1.5 ms and 30-60 ms, respectively. In this paper we present a simple model which takes thermal and non-thermal phonon processes into account and provides a description of the observed temperature dependence of the pulse shape. The fast component, which completely dominates the signal at low temperatures, is due to high-frequency non-thermal phonons being absorbed in the thermometer. Thermalization of these phonons then leads to a temperature rise of the absorber, which causes the slow thermal component. At the highest operating temperatures (T ∼ 80 mK) the amplitude of the slow component is roughly as expected from the heat capacity of the absorber. The strong suppression of the slow component at low temperatures is explained mostly as a consequence of the weak thermal coupling between electrons and phonons in the thermometer at low temperatures.

Original languageEnglish (US)
Pages (from-to)69-104
Number of pages36
JournalJournal of Low Temperature Physics
Volume100
Issue number1-2
DOIs
StatePublished - Jul 1 1995
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Model for cryogenic particle detectors with superconducting phase transition thermometers'. Together they form a unique fingerprint.

  • Cite this

    Pröbst, F., Frank, M., Cooper, S., Colling, P., Dummer, D., Ferger, P., Forster, G., Nucciotti, A., Seidel, W., & Stodolsky, L. (1995). Model for cryogenic particle detectors with superconducting phase transition thermometers. Journal of Low Temperature Physics, 100(1-2), 69-104. https://doi.org/10.1007/BF00753837