Metabolomics in psoriatic disease: Pilot study reveals metabolite differences in psoriasis and psoriatic arthritis

April W. Armstrong, Julie Wu, Mary Ann Johnson, Dmitry Grapov, Baktazh Azizi, Jaskaran Dhillon, Oliver Fiehn

Research output: Contribution to journalArticle

21 Scopus citations

Abstract

Importance: While "omics? studies have advanced our understanding of inflammatory skin diseases, metabolomics is mostly an unexplored field in dermatology. Objective: We sought to elucidate the pathogenesis of psoriatic diseases by determining the differences in metabolomic profiles among psoriasis patients with or without psoriatic arthritis and healthy controls. Design: We employed a global metabolomics approach to compare circulating metabolites from patients with psoriasis, psoriasis and psoriatic arthritis, and healthy controls. Setting: Study participants were recruited from the general community and from the Psoriasis Clinic at the University of California Davis in United States. Participants: We examined metabolomic profiles using blood serum samples from 30 patients age and gender matched into three groups: 10 patients with psoriasis, 10 patients with psoriasis and psoriatic arthritis and 10 control participants. Main outcome(s) and measures(s): Metabolite levels were measured calculating the mean peak intensities from gas chromatography time-of-flight mass spectrometry. Results: Multivariate analyses of metabolomics profiles revealed altered serum metabolites among the study population. Compared to control patients, psoriasis patients had a higher level of alpha ketoglutaric acid (Pso: 288 ± 88; Control: 209 ± 69; p=0.03), a lower level of asparagine (Pso: 5460 ± 980; Control: 7260 ± 2100; p=0.02), and a lower level of glutamine (Pso: 86000 ± 20000; Control: 111000 ± 27000; p=0.02). Compared to control patients, patients with psoriasis and psoriatic arthritis had increased levels of glucuronic acid (Pso + PsA: 638 ± 250; Control: 347 ± 61; p=0.001). Compared to patients with psoriasis alone, patients with both psoriasis and psoriatic arthritis had a decreased level of alpha ketoglutaric acid (Pso + PsA: 186 ± 80; Pso: 288 ± 88; p=0.02) and an increased level of lignoceric acid (Pso + PsA: 442 ± 280; Pso: 214 ± 64; p=0.02). Conclusions and relevance: The metabolite differences help elucidate the pathogenesis of psoriasis and psoriatic arthritis and they may provide insights for therapeutic development.

Original languageEnglish (US)
JournalF1000Research
Volume3
DOIs
StatePublished - Oct 21 2014

ASJC Scopus subject areas

  • Medicine(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Metabolomics in psoriatic disease: Pilot study reveals metabolite differences in psoriasis and psoriatic arthritis'. Together they form a unique fingerprint.

  • Cite this