Mesenchymal stromal cells regulate sialylations of n-glycans, affecting cell migration and survival

Kayla Templeton, Meiby Ramos, Jacqueline Rose, Bryan Le, Qingwen Zhou, Amin Cressman, Stephanie Ferreyra, Carlito B. Lebrilla, Fernando Antonio Fierro

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


N-Glycosylations are an important post-translational modification of proteins that can significantly impact cell function. Terminal sialic acid in hybrid or complex N-glycans has been shown to be relevant in various types of cancer, but its role in non-malignant cells remains poorly understood. We have previously shown that the motility of human bone marrow derived mesenchymal stromal cells (MSCs) can be modified by altering N-glycoforms. The goal of this study was to determine the role of sialylated N-glycans in MSCs. Here, we show that IFN-gamma or exposure to culture media low in fetal bovine serum (FBS) increases sialylated N-glycans, while PDGF-BB reduces them. These stimuli alter mRNA levels of sialyltransferases such as ST3Gal1, ST6Gal1, or ST3Gal4, suggesting that sialylation of N-glycans is regulated by transcriptional control of sialyltransferases. We next show that 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-Neu5Ac) effectively inhibits sialylations in MSCs. Supplementation with 3F-Neu5Ac increases adhesion and migration of MSCs, as assessed by both videomicroscopy and wound/scratch assays. Interestingly, pre-treatment with 3F-Neu5Ac also increases the survival of MSCs in an in vitro ischemia model. We also show that pre-treatment or continuous treatment with 3F-Neu5Ac inhibits both osteogenic and adipogenic differentiation of MSCs. Finally, secretion of key trophic factors by MSCs is variably affected upon exposure to 3F-Neu5Ac. Altogether, our experiments suggest that sialylation of N-glycans is tightly regulated in response to environmental cues and that glycoengineering MSCs to reduce sialylated N-glycans could be beneficial to increase both cell migration and survival, which may positively impact the therapeutic potential of the cells.

Original languageEnglish (US)
Article number6868
JournalInternational journal of molecular sciences
Issue number13
StatePublished - Jul 1 2021


  • Glycosylation
  • Mesenchymal stromal cells
  • Migration
  • Sialic acid
  • Sialyltransferases
  • Survival

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry


Dive into the research topics of 'Mesenchymal stromal cells regulate sialylations of n-glycans, affecting cell migration and survival'. Together they form a unique fingerprint.

Cite this