Meiotic recombination: The essence of heredity

Research output: Contribution to journalArticlepeer-review

332 Scopus citations


The study of homologous recombination has its historical roots in meiosis. In this context,recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.

Original languageEnglish (US)
Article numbera016618
JournalCold Spring Harbor perspectives in biology
Issue number12
StatePublished - Dec 1 2015

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)


Dive into the research topics of 'Meiotic recombination: The essence of heredity'. Together they form a unique fingerprint.

Cite this