Abstract
The effects of dexamethasone, a glucocorticoid analog, on interleukin 8 (IL-8) gene expression were studied in cultures of primary human tracheobronchial epithelial cells and an immortalized human bronchial epithelial cell line, HBE1 cells. Dexamethasone inhibited IL-8 mRNA and protein expression in a concentration- and time-dependent manner. The inhibition did not occur at the transcriptional level since both nuclear run-on activity and IL-8 promoter-reporter gene expression assay revealed no significant effect. Instead, there was a change in IL-8 mRNA stability in dexamethasone-treated cultures. Under actinomycin D treatment, IL-8 mRNA was quite stable in dexamethasone-depleted cultures, while in dexamethasone-pretreated cultures, IL-8 message was rapidly degraded within the first hour, then leveled off. When dexamethasone and actinomycin D were added simultaneously to dexamethasone-depleted cultures, IL-8 mRNA remained rather stable. When cycloheximide was used to inhibit new protein synthesis, dexamethasone-dependent inhibition was not observed. These results suggest that a posttranscriptional mechanism, which requires dexamethasone-dependent new protein synthesis, is involved in the regulation of IL-8 mRNA by dexamethasone in airway epithelial cells.
Original language | English (US) |
---|---|
Journal | American Journal of Physiology - Lung Cellular and Molecular Physiology |
Volume | 280 |
Issue number | 1 24-1 |
State | Published - Jan 2001 |
Keywords
- mRNA stability
- Posttranscriptional regulation
- Transcription
ASJC Scopus subject areas
- Pulmonary and Respiratory Medicine
- Cell Biology
- Physiology
- Physiology (medical)