Measuring Activation and Luminescence Time Scales of Upconverting NaYF4:Yb,Er Nanocrystals

Ted A. Laurence, Yang Liu, Ming Zhang, Matthew J. Owen, Jinkyu Han, Lingdong Sun, Chunhua Yan, Gang-yu Liu

Research output: Contribution to journalArticlepeer-review

5 Scopus citations


Accurate determination of upconversion and luminescence lifetimes requires kinetic modeling of the complete time-resolved response for upconversion luminescence of NaYF4:Yb,Er nanocrystals. Prior investigations typically perform exponential fitting of the tail in the time profile or employ complex systems of differential equations to extract lifetimes. To simplify analysis while fitting the entire time-resolved response, this work introduces a set of simplified models that model the response as a convolution of upconversion and fluorescence processes. Models for two- and three-photon upconversion processes are developed and tested for NaYF4:Yb,Er nanocrystals excited by a 980 nm laser. The results are presented for the transitions 2H11/2, 4S3/24I15/2 (530 nm, green emission), 4F9/24I15/2 (650 nm, red emission), and 2H9/24I15/2 (400 nm, blue emission). Even with the same number of fitting parameters, the two- and three-photon models resulted in better fitting than the simpler models of single and two convolved exponentials for 30 nm, 400 nm, and silica-coated 30 nm nanoparticles. We provide evidence that the longest time scales (0.5-4 ms) are due to the luminescence of the final state, that the energy transfer waiting times leading to upconversion are shorter (<0.1 ms), and that more than two waiting times are required to explain the entire time response. The long-time response deviates from single-exponential behavior more strongly in uncoated and silica-coated 30 nm particles than for 400 nm particles. This deviation may result from heterogeneity of the local environment of ions within the 30 nm particles.

Original languageEnglish (US)
Pages (from-to)23780-23789
Number of pages10
JournalJournal of Physical Chemistry C
Issue number41
StatePublished - Oct 18 2018
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films


Dive into the research topics of 'Measuring Activation and Luminescence Time Scales of Upconverting NaYF<sub>4</sub>:Yb,Er Nanocrystals'. Together they form a unique fingerprint.

Cite this