TY - JOUR
T1 - Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors
AU - Denkert, Carsten
AU - Budczies, Jan
AU - Kind, Tobias
AU - Weichert, Wilko
AU - Tablack, Peter
AU - Sehouli, Jalid
AU - Niesporek, Silvia
AU - Könsgen, Dominique
AU - Dietel, Manfred
AU - Fiehn, Oliver
PY - 2006/11/15
Y1 - 2006/11/15
N2 - Metabolites are the end products of cellular regulatory processes, and their levels can be regarded as the ultimate response of biological systems to genetic or environmental changes. We have used a metabolite profiling approach to test the hypothesis that quantitative signatures of primary metabolites can be used to characterize molecular changes in ovarian tumor tissues. Sixty-six invasive ovarian carcinomas and nine borderline tumors of the ovary were analyzed by gas chromatography/time-of-flight mass spectrometry (GC-TOF MS) using a novel contamination-free injector system. After automated mass spectral deconvolution, 291 metabolites were detected, of which 114 (39.1%) were annotated as known compounds. By t test statistics with P < 0.01, 51 metabolites were significantly different between borderline tumors and carcinomas, with a false discovery rate of 7.8%, estimated with repeated permutation analysis. Principal component analysis (PCA) revealed four principal components that were significantly different between both groups, with the highest significance found for the second component (P = 0.00000009). PCA as well as additional supervised predictive models allowed a separation of 88% of the borderline tumors from the carcinomas. Our study shows for the first time that large-scale metabolic profiling using GC-TOF MS is suitable for analysis of fresh frozen human tumor samples, and that there is a consistent and significant change in primary metabolism of ovarian tumors, which can be detected using multivariate statistical approaches. We conclude that metabolomics is a promising high-throughput, automated approach in addition to functional genomics and proteomics for analyses of molecular changes in malignant tumors.
AB - Metabolites are the end products of cellular regulatory processes, and their levels can be regarded as the ultimate response of biological systems to genetic or environmental changes. We have used a metabolite profiling approach to test the hypothesis that quantitative signatures of primary metabolites can be used to characterize molecular changes in ovarian tumor tissues. Sixty-six invasive ovarian carcinomas and nine borderline tumors of the ovary were analyzed by gas chromatography/time-of-flight mass spectrometry (GC-TOF MS) using a novel contamination-free injector system. After automated mass spectral deconvolution, 291 metabolites were detected, of which 114 (39.1%) were annotated as known compounds. By t test statistics with P < 0.01, 51 metabolites were significantly different between borderline tumors and carcinomas, with a false discovery rate of 7.8%, estimated with repeated permutation analysis. Principal component analysis (PCA) revealed four principal components that were significantly different between both groups, with the highest significance found for the second component (P = 0.00000009). PCA as well as additional supervised predictive models allowed a separation of 88% of the borderline tumors from the carcinomas. Our study shows for the first time that large-scale metabolic profiling using GC-TOF MS is suitable for analysis of fresh frozen human tumor samples, and that there is a consistent and significant change in primary metabolism of ovarian tumors, which can be detected using multivariate statistical approaches. We conclude that metabolomics is a promising high-throughput, automated approach in addition to functional genomics and proteomics for analyses of molecular changes in malignant tumors.
UR - http://www.scopus.com/inward/record.url?scp=33845314350&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845314350&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-06-0755
DO - 10.1158/0008-5472.CAN-06-0755
M3 - Article
C2 - 17108116
AN - SCOPUS:33845314350
VL - 66
SP - 10795
EP - 10804
JO - Journal of Cancer Research
JF - Journal of Cancer Research
SN - 0099-7013
IS - 22
ER -