Manufacture and preparation of human placenta-derived mesenchymal stromal cells for local tissue delivery

Lee Lankford, Y. Julia Chen, Zoe Saenz, Priyadarsini Kumar, Connor Long, Diana L Farmer, Aijun Wang

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Background In this study we describe the development of a Current Good Manufacturing Practice (CGMP)-compliant process to isolate, expand and bank placenta-derived mesenchymal stromal cells (PMSCs) for use as stem cell therapy. We characterize the viability, proliferation and neuroprotective secretory profile of PMSCs seeded on clinical-grade porcine small intestine submucosa extracellular matrix (SIS-ECM; Cook Biotech). Methods PMSCs were isolated from early gestation placenta chorionic villus tissue via explant culture. Cells were expanded, banked and screened. Purity and expression of markers of pluripotency were determined using flow cytometry. Optimal loading density and viability of PMSCs on SIS-ECM were determined using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell proliferation and fluorescent live/dead assays, respectively. Growth factors secretion was analyzed using enzyme-linked immunosorbent assays (ELISA). Results PMSCs were rapidly expanded and banked. Viable Master and Working Cell Banks were stable with minimal decrease in viability at 6 months. All PMSCs were sterile, free from Mycoplasma species, karyotypically normal and had low endotoxin levels. PMSCs were homogeneous by immunophenotyping and expressed little to no pluripotency markers. Optimal loading density on SIS-ECM was 3–5 × 105 cells/cm2, and seeded cells were >95% viable. Neurotrophic factor secretion was detectable from PMSCs seeded on plastic and SIS-ECM with variability between donor lots. Discussion PMSCs from early gestation placental tissues can be rapidly expanded and banked in stable, viable cell banks that are free from contaminating agents, genetically normal and pure. PMSC delivery can be accomplished by using SIS-ECM, which maintains cell viability and protein secretion. Future work in vivo is necessary to optimize cell seeding and transplantation to maximize therapeutic capabilities.

Original languageEnglish (US)
Pages (from-to)680-688
Number of pages9
Issue number6
StatePublished - Jun 1 2017


  • cell delivery
  • cell manufacturing
  • Current Good Manufacturing Practice
  • mesenchymal stromal cells
  • placenta
  • small intestine submucosa

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Oncology
  • Genetics(clinical)
  • Cell Biology
  • Cancer Research
  • Transplantation


Dive into the research topics of 'Manufacture and preparation of human placenta-derived mesenchymal stromal cells for local tissue delivery'. Together they form a unique fingerprint.

Cite this