Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy

a prospective multicentre cohort study

MARBLE consortium

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Background: In neonatal encephalopathy, the clinical manifestations of injury can only be reliably assessed several years after an intervention, complicating early prognostication and rendering trials of promising neuroprotectants slow and expensive. We aimed to determine the accuracy of thalamic proton magnetic resonance (MR) spectroscopy (MRS) biomarkers as early predictors of the neurodevelopmental abnormalities observed years after neonatal encephalopathy. Methods: We did a prospective multicentre cohort study across eight neonatal intensive care units in the UK and USA, recruiting term and near-term neonates who received therapeutic hypothermia for neonatal encephalopathy. We excluded infants with life-threatening congenital malformations, syndromic disorders, neurometabolic diseases, or any alternative diagnoses for encephalopathy that were apparent within 6 h of birth. We obtained T 1 -weighted, T 2 -weighted, and diffusion-weighted MRI and thalamic proton MRS 4–14 days after birth. Clinical neurodevelopmental tests were done 18–24 months later. The primary outcome was the association between MR biomarkers and an adverse neurodevelopmental outcome, defined as death or moderate or severe disability, measured using a multivariable prognostic model. We used receiver operating characteristic (ROC) curves to examine the prognostic accuracy of the individual biomarkers. This trial is registered with ClinicalTrials.gov, number NCT01309711. Findings: Between Jan 29, 2013, and June 25, 2016, we recruited 223 infants who all underwent MRI and MRS at a median age of 7 days (IQR 5–10), with 190 (85%) followed up for neurological examination at a median age of 23 months (20–25). Of those followed up, 31 (16%) had moderate or severe disability, including one death. Multiple logistic regression analysis could not be done because thalamic N-acetylaspartate (NAA) concentration alone accurately predicted an adverse neurodevelopmental outcome (area under the curve [AUC] of 0·99 [95% CI 0·94–1·00]; sensitivity 100% [74–100]; specificity 97% [90–100]; n=82); the models would not converge when any additional variable was examined. The AUC (95% CI) of clinical examination at 6 h (n=190) and at discharge (n=167) were 0·72 (0·65–0·78) and 0·60 (0·53–0·68), respectively, and the AUC of abnormal amplitude integrated EEG at 6 h (n=169) was 0·73 (0·65–0·79). On conventional MRI (n=190), cortical injury had an AUC of 0·67 (0·60–0·73), basal ganglia or thalamic injury had an AUC of 0·81 (0·75–0·87), and abnormal signal in the posterior limb of internal capsule (PLIC) had an AUC of 0·82 (0·76–0·87). Fractional anisotropy of PLIC (n=65) had an AUC of 0·82 (0·76–0·87). MRS metabolite peak-area ratios (n=160) of NAA–creatine (<1·29) had an AUC of 0·79 (0·72–0·85), of NAA–choline had an AUC of 0·74 (0·66–0·80), and of lactate–NAA (>0·22) had an AUC of 0·94 (0·89–0·97). Interpretation: Thalamic proton MRS measures acquired soon after birth in neonatal encephalopathy had the highest accuracy to predict neurdevelopment 2 years later. These methods could be applied to increase the power of neuroprotection trials while reducing their duration. Funding: National Institute for Health Research UK.

Original languageEnglish (US)
Pages (from-to)35-45
Number of pages11
JournalThe Lancet Neurology
Volume18
Issue number1
DOIs
StatePublished - Jan 1 2019
Externally publishedYes

Fingerprint

Brain Diseases
Hypothermia
Brain Injuries
Multicenter Studies
Area Under Curve
Cohort Studies
Magnetic Resonance Spectroscopy
Internal Capsule
Biomarkers
Parturition
Protons
Wounds and Injuries
Extremities
Induced Hypothermia
Diffusion Magnetic Resonance Imaging
Neonatal Intensive Care Units
Anisotropy
Neurologic Examination
National Institutes of Health (U.S.)
Neuroprotective Agents

ASJC Scopus subject areas

  • Clinical Neurology

Cite this

Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy : a prospective multicentre cohort study. / MARBLE consortium.

In: The Lancet Neurology, Vol. 18, No. 1, 01.01.2019, p. 35-45.

Research output: Contribution to journalArticle

@article{a918d792546947d98ed8bf3ee7580cdd,
title = "Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study",
abstract = "Background: In neonatal encephalopathy, the clinical manifestations of injury can only be reliably assessed several years after an intervention, complicating early prognostication and rendering trials of promising neuroprotectants slow and expensive. We aimed to determine the accuracy of thalamic proton magnetic resonance (MR) spectroscopy (MRS) biomarkers as early predictors of the neurodevelopmental abnormalities observed years after neonatal encephalopathy. Methods: We did a prospective multicentre cohort study across eight neonatal intensive care units in the UK and USA, recruiting term and near-term neonates who received therapeutic hypothermia for neonatal encephalopathy. We excluded infants with life-threatening congenital malformations, syndromic disorders, neurometabolic diseases, or any alternative diagnoses for encephalopathy that were apparent within 6 h of birth. We obtained T 1 -weighted, T 2 -weighted, and diffusion-weighted MRI and thalamic proton MRS 4–14 days after birth. Clinical neurodevelopmental tests were done 18–24 months later. The primary outcome was the association between MR biomarkers and an adverse neurodevelopmental outcome, defined as death or moderate or severe disability, measured using a multivariable prognostic model. We used receiver operating characteristic (ROC) curves to examine the prognostic accuracy of the individual biomarkers. This trial is registered with ClinicalTrials.gov, number NCT01309711. Findings: Between Jan 29, 2013, and June 25, 2016, we recruited 223 infants who all underwent MRI and MRS at a median age of 7 days (IQR 5–10), with 190 (85{\%}) followed up for neurological examination at a median age of 23 months (20–25). Of those followed up, 31 (16{\%}) had moderate or severe disability, including one death. Multiple logistic regression analysis could not be done because thalamic N-acetylaspartate (NAA) concentration alone accurately predicted an adverse neurodevelopmental outcome (area under the curve [AUC] of 0·99 [95{\%} CI 0·94–1·00]; sensitivity 100{\%} [74–100]; specificity 97{\%} [90–100]; n=82); the models would not converge when any additional variable was examined. The AUC (95{\%} CI) of clinical examination at 6 h (n=190) and at discharge (n=167) were 0·72 (0·65–0·78) and 0·60 (0·53–0·68), respectively, and the AUC of abnormal amplitude integrated EEG at 6 h (n=169) was 0·73 (0·65–0·79). On conventional MRI (n=190), cortical injury had an AUC of 0·67 (0·60–0·73), basal ganglia or thalamic injury had an AUC of 0·81 (0·75–0·87), and abnormal signal in the posterior limb of internal capsule (PLIC) had an AUC of 0·82 (0·76–0·87). Fractional anisotropy of PLIC (n=65) had an AUC of 0·82 (0·76–0·87). MRS metabolite peak-area ratios (n=160) of NAA–creatine (<1·29) had an AUC of 0·79 (0·72–0·85), of NAA–choline had an AUC of 0·74 (0·66–0·80), and of lactate–NAA (>0·22) had an AUC of 0·94 (0·89–0·97). Interpretation: Thalamic proton MRS measures acquired soon after birth in neonatal encephalopathy had the highest accuracy to predict neurdevelopment 2 years later. These methods could be applied to increase the power of neuroprotection trials while reducing their duration. Funding: National Institute for Health Research UK.",
author = "{MARBLE consortium} and Lally, {Peter J.} and Paolo Montaldo and V{\^a}nia Oliveira and Aung Soe and Ravi Swamy and Paul Bassett and Josephine Mendoza and Gaurav Atreja and Ujwal Kariholu and Santosh Pattnayak and Palaniappan Sashikumar and Helen Harizaj and Martin Mitchell and Vijayakumar Ganesh and Sundeep Harigopal and Jennifer Dixon and Philip English and Paul Clarke and Priya Muthukumar and Prakash Satodia and Sarah Wayte and Abernethy, {Laurence J.} and Kiran Yajamanyam and Alan Bainbridge and David Price and Angela Huertas and Sharp, {David J.} and Kalra, {Vaneet K} and Sanjay Chawla and Seetha Shankaran and Sudhin Thayyil and Sundeeep Harigopal",
year = "2019",
month = "1",
day = "1",
doi = "10.1016/S1474-4422(18)30325-9",
language = "English (US)",
volume = "18",
pages = "35--45",
journal = "The Lancet Neurology",
issn = "1474-4422",
publisher = "Lancet Publishing Group",
number = "1",

}

TY - JOUR

T1 - Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy

T2 - a prospective multicentre cohort study

AU - MARBLE consortium

AU - Lally, Peter J.

AU - Montaldo, Paolo

AU - Oliveira, Vânia

AU - Soe, Aung

AU - Swamy, Ravi

AU - Bassett, Paul

AU - Mendoza, Josephine

AU - Atreja, Gaurav

AU - Kariholu, Ujwal

AU - Pattnayak, Santosh

AU - Sashikumar, Palaniappan

AU - Harizaj, Helen

AU - Mitchell, Martin

AU - Ganesh, Vijayakumar

AU - Harigopal, Sundeep

AU - Dixon, Jennifer

AU - English, Philip

AU - Clarke, Paul

AU - Muthukumar, Priya

AU - Satodia, Prakash

AU - Wayte, Sarah

AU - Abernethy, Laurence J.

AU - Yajamanyam, Kiran

AU - Bainbridge, Alan

AU - Price, David

AU - Huertas, Angela

AU - Sharp, David J.

AU - Kalra, Vaneet K

AU - Chawla, Sanjay

AU - Shankaran, Seetha

AU - Thayyil, Sudhin

AU - Harigopal, Sundeeep

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Background: In neonatal encephalopathy, the clinical manifestations of injury can only be reliably assessed several years after an intervention, complicating early prognostication and rendering trials of promising neuroprotectants slow and expensive. We aimed to determine the accuracy of thalamic proton magnetic resonance (MR) spectroscopy (MRS) biomarkers as early predictors of the neurodevelopmental abnormalities observed years after neonatal encephalopathy. Methods: We did a prospective multicentre cohort study across eight neonatal intensive care units in the UK and USA, recruiting term and near-term neonates who received therapeutic hypothermia for neonatal encephalopathy. We excluded infants with life-threatening congenital malformations, syndromic disorders, neurometabolic diseases, or any alternative diagnoses for encephalopathy that were apparent within 6 h of birth. We obtained T 1 -weighted, T 2 -weighted, and diffusion-weighted MRI and thalamic proton MRS 4–14 days after birth. Clinical neurodevelopmental tests were done 18–24 months later. The primary outcome was the association between MR biomarkers and an adverse neurodevelopmental outcome, defined as death or moderate or severe disability, measured using a multivariable prognostic model. We used receiver operating characteristic (ROC) curves to examine the prognostic accuracy of the individual biomarkers. This trial is registered with ClinicalTrials.gov, number NCT01309711. Findings: Between Jan 29, 2013, and June 25, 2016, we recruited 223 infants who all underwent MRI and MRS at a median age of 7 days (IQR 5–10), with 190 (85%) followed up for neurological examination at a median age of 23 months (20–25). Of those followed up, 31 (16%) had moderate or severe disability, including one death. Multiple logistic regression analysis could not be done because thalamic N-acetylaspartate (NAA) concentration alone accurately predicted an adverse neurodevelopmental outcome (area under the curve [AUC] of 0·99 [95% CI 0·94–1·00]; sensitivity 100% [74–100]; specificity 97% [90–100]; n=82); the models would not converge when any additional variable was examined. The AUC (95% CI) of clinical examination at 6 h (n=190) and at discharge (n=167) were 0·72 (0·65–0·78) and 0·60 (0·53–0·68), respectively, and the AUC of abnormal amplitude integrated EEG at 6 h (n=169) was 0·73 (0·65–0·79). On conventional MRI (n=190), cortical injury had an AUC of 0·67 (0·60–0·73), basal ganglia or thalamic injury had an AUC of 0·81 (0·75–0·87), and abnormal signal in the posterior limb of internal capsule (PLIC) had an AUC of 0·82 (0·76–0·87). Fractional anisotropy of PLIC (n=65) had an AUC of 0·82 (0·76–0·87). MRS metabolite peak-area ratios (n=160) of NAA–creatine (<1·29) had an AUC of 0·79 (0·72–0·85), of NAA–choline had an AUC of 0·74 (0·66–0·80), and of lactate–NAA (>0·22) had an AUC of 0·94 (0·89–0·97). Interpretation: Thalamic proton MRS measures acquired soon after birth in neonatal encephalopathy had the highest accuracy to predict neurdevelopment 2 years later. These methods could be applied to increase the power of neuroprotection trials while reducing their duration. Funding: National Institute for Health Research UK.

AB - Background: In neonatal encephalopathy, the clinical manifestations of injury can only be reliably assessed several years after an intervention, complicating early prognostication and rendering trials of promising neuroprotectants slow and expensive. We aimed to determine the accuracy of thalamic proton magnetic resonance (MR) spectroscopy (MRS) biomarkers as early predictors of the neurodevelopmental abnormalities observed years after neonatal encephalopathy. Methods: We did a prospective multicentre cohort study across eight neonatal intensive care units in the UK and USA, recruiting term and near-term neonates who received therapeutic hypothermia for neonatal encephalopathy. We excluded infants with life-threatening congenital malformations, syndromic disorders, neurometabolic diseases, or any alternative diagnoses for encephalopathy that were apparent within 6 h of birth. We obtained T 1 -weighted, T 2 -weighted, and diffusion-weighted MRI and thalamic proton MRS 4–14 days after birth. Clinical neurodevelopmental tests were done 18–24 months later. The primary outcome was the association between MR biomarkers and an adverse neurodevelopmental outcome, defined as death or moderate or severe disability, measured using a multivariable prognostic model. We used receiver operating characteristic (ROC) curves to examine the prognostic accuracy of the individual biomarkers. This trial is registered with ClinicalTrials.gov, number NCT01309711. Findings: Between Jan 29, 2013, and June 25, 2016, we recruited 223 infants who all underwent MRI and MRS at a median age of 7 days (IQR 5–10), with 190 (85%) followed up for neurological examination at a median age of 23 months (20–25). Of those followed up, 31 (16%) had moderate or severe disability, including one death. Multiple logistic regression analysis could not be done because thalamic N-acetylaspartate (NAA) concentration alone accurately predicted an adverse neurodevelopmental outcome (area under the curve [AUC] of 0·99 [95% CI 0·94–1·00]; sensitivity 100% [74–100]; specificity 97% [90–100]; n=82); the models would not converge when any additional variable was examined. The AUC (95% CI) of clinical examination at 6 h (n=190) and at discharge (n=167) were 0·72 (0·65–0·78) and 0·60 (0·53–0·68), respectively, and the AUC of abnormal amplitude integrated EEG at 6 h (n=169) was 0·73 (0·65–0·79). On conventional MRI (n=190), cortical injury had an AUC of 0·67 (0·60–0·73), basal ganglia or thalamic injury had an AUC of 0·81 (0·75–0·87), and abnormal signal in the posterior limb of internal capsule (PLIC) had an AUC of 0·82 (0·76–0·87). Fractional anisotropy of PLIC (n=65) had an AUC of 0·82 (0·76–0·87). MRS metabolite peak-area ratios (n=160) of NAA–creatine (<1·29) had an AUC of 0·79 (0·72–0·85), of NAA–choline had an AUC of 0·74 (0·66–0·80), and of lactate–NAA (>0·22) had an AUC of 0·94 (0·89–0·97). Interpretation: Thalamic proton MRS measures acquired soon after birth in neonatal encephalopathy had the highest accuracy to predict neurdevelopment 2 years later. These methods could be applied to increase the power of neuroprotection trials while reducing their duration. Funding: National Institute for Health Research UK.

UR - http://www.scopus.com/inward/record.url?scp=85058887703&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85058887703&partnerID=8YFLogxK

U2 - 10.1016/S1474-4422(18)30325-9

DO - 10.1016/S1474-4422(18)30325-9

M3 - Article

VL - 18

SP - 35

EP - 45

JO - The Lancet Neurology

JF - The Lancet Neurology

SN - 1474-4422

IS - 1

ER -