Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET

B. J. Pichler, B. K. Swann, J. Rochelle, R. E. Nutt, Simon R Cherry, S. B. Siegel

Research output: Contribution to journalArticle

53 Citations (Scopus)

Abstract

Avalanche photodiodes (APDs) have proven to be useful as light detectors for high resolution positron emission tomography (PET). Their compactness makes these devices excellent candidates for replacing bulky photomultiplier tubes (PMTs) in PET systems where space limitations are an issue. The readout of densely packed, 10 × 10 lutetium oxyorthosilicate (LSO) block detectors (crystal size 2.0 × 2.0 × 12 mm3) with custom-built monolithic 3 × 3 APD arrays was investigated. The APDs had a 5 × 5 mm2 active surface and were arranged on a 6.25 mm pitch. The dead space on the edges of the array was 1.25 mm. The APDs were operated at a bias voltage of approximately 380 V for a gain of 100 and a dark current of 10 nA per APD. The standard deviation in gain between the APDs in the array ranged from 1.8 to 6.5% as the gain was varied from 50 to 108. A fast, low-noise, multi-channel charge sensitive preamplifier application-specific integrated circuit (ASIC) was developed for the APD readout. The amplifier had a rise time of 8 ns, a noise floor of 515 e- rms and a 9 e- pF-1 noise slope. An acquired flood image showed that all 100 crystals from the block detector could be resolved. Timing measurements with single-channel LSO-APD detectors, as well as with the array, against a plastic scintillator and PMT assembly showed a time resolution of 1.2 ns and 2.5 ns, respectively. The energy resolution measured with a single 4.0 × 4.0 × 10 mm3 LSO crystal, wrapped in four-layer polytetrafluoroethylene (PTFE) tape and coupled with optical grease on a single APD of the array, yielded 15% (full width at half maximum, FWHM) at 511 keV. Stability tests over 9 months of operation showed that the APD arrays do not degrade appreciably. These results demonstrate the ability to decode densely packed LSO scintillation blocks with compact APD arrays. The good timing and energy resolution makes these detectors suitable for high resolution PET.

Original languageEnglish (US)
Pages (from-to)4305-4319
Number of pages15
JournalPhysics in Medicine and Biology
Volume49
Issue number18
DOIs
StatePublished - Sep 21 2004

Fingerprint

Avalanches
Lutetium
lutetium
Avalanche photodiodes
Positron emission tomography
Positron-Emission Tomography
avalanches
photodiodes
animals
readout
positrons
Animals
tomography
Detectors
high resolution
detectors
Photomultipliers
photomultiplier tubes
Crystals
Noise

ASJC Scopus subject areas

  • Biomedical Engineering
  • Physics and Astronomy (miscellaneous)
  • Radiology Nuclear Medicine and imaging
  • Radiological and Ultrasound Technology

Cite this

Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. / Pichler, B. J.; Swann, B. K.; Rochelle, J.; Nutt, R. E.; Cherry, Simon R; Siegel, S. B.

In: Physics in Medicine and Biology, Vol. 49, No. 18, 21.09.2004, p. 4305-4319.

Research output: Contribution to journalArticle

Pichler, B. J. ; Swann, B. K. ; Rochelle, J. ; Nutt, R. E. ; Cherry, Simon R ; Siegel, S. B. / Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. In: Physics in Medicine and Biology. 2004 ; Vol. 49, No. 18. pp. 4305-4319.
@article{0be25114b9b3441b9a1c2fd44c3d03b0,
title = "Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET",
abstract = "Avalanche photodiodes (APDs) have proven to be useful as light detectors for high resolution positron emission tomography (PET). Their compactness makes these devices excellent candidates for replacing bulky photomultiplier tubes (PMTs) in PET systems where space limitations are an issue. The readout of densely packed, 10 × 10 lutetium oxyorthosilicate (LSO) block detectors (crystal size 2.0 × 2.0 × 12 mm3) with custom-built monolithic 3 × 3 APD arrays was investigated. The APDs had a 5 × 5 mm2 active surface and were arranged on a 6.25 mm pitch. The dead space on the edges of the array was 1.25 mm. The APDs were operated at a bias voltage of approximately 380 V for a gain of 100 and a dark current of 10 nA per APD. The standard deviation in gain between the APDs in the array ranged from 1.8 to 6.5{\%} as the gain was varied from 50 to 108. A fast, low-noise, multi-channel charge sensitive preamplifier application-specific integrated circuit (ASIC) was developed for the APD readout. The amplifier had a rise time of 8 ns, a noise floor of 515 e- rms and a 9 e- pF-1 noise slope. An acquired flood image showed that all 100 crystals from the block detector could be resolved. Timing measurements with single-channel LSO-APD detectors, as well as with the array, against a plastic scintillator and PMT assembly showed a time resolution of 1.2 ns and 2.5 ns, respectively. The energy resolution measured with a single 4.0 × 4.0 × 10 mm3 LSO crystal, wrapped in four-layer polytetrafluoroethylene (PTFE) tape and coupled with optical grease on a single APD of the array, yielded 15{\%} (full width at half maximum, FWHM) at 511 keV. Stability tests over 9 months of operation showed that the APD arrays do not degrade appreciably. These results demonstrate the ability to decode densely packed LSO scintillation blocks with compact APD arrays. The good timing and energy resolution makes these detectors suitable for high resolution PET.",
author = "Pichler, {B. J.} and Swann, {B. K.} and J. Rochelle and Nutt, {R. E.} and Cherry, {Simon R} and Siegel, {S. B.}",
year = "2004",
month = "9",
day = "21",
doi = "10.1088/0031-9155/49/18/008",
language = "English (US)",
volume = "49",
pages = "4305--4319",
journal = "Physics in Medicine and Biology",
issn = "0031-9155",
publisher = "IOP Publishing Ltd.",
number = "18",

}

TY - JOUR

T1 - Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET

AU - Pichler, B. J.

AU - Swann, B. K.

AU - Rochelle, J.

AU - Nutt, R. E.

AU - Cherry, Simon R

AU - Siegel, S. B.

PY - 2004/9/21

Y1 - 2004/9/21

N2 - Avalanche photodiodes (APDs) have proven to be useful as light detectors for high resolution positron emission tomography (PET). Their compactness makes these devices excellent candidates for replacing bulky photomultiplier tubes (PMTs) in PET systems where space limitations are an issue. The readout of densely packed, 10 × 10 lutetium oxyorthosilicate (LSO) block detectors (crystal size 2.0 × 2.0 × 12 mm3) with custom-built monolithic 3 × 3 APD arrays was investigated. The APDs had a 5 × 5 mm2 active surface and were arranged on a 6.25 mm pitch. The dead space on the edges of the array was 1.25 mm. The APDs were operated at a bias voltage of approximately 380 V for a gain of 100 and a dark current of 10 nA per APD. The standard deviation in gain between the APDs in the array ranged from 1.8 to 6.5% as the gain was varied from 50 to 108. A fast, low-noise, multi-channel charge sensitive preamplifier application-specific integrated circuit (ASIC) was developed for the APD readout. The amplifier had a rise time of 8 ns, a noise floor of 515 e- rms and a 9 e- pF-1 noise slope. An acquired flood image showed that all 100 crystals from the block detector could be resolved. Timing measurements with single-channel LSO-APD detectors, as well as with the array, against a plastic scintillator and PMT assembly showed a time resolution of 1.2 ns and 2.5 ns, respectively. The energy resolution measured with a single 4.0 × 4.0 × 10 mm3 LSO crystal, wrapped in four-layer polytetrafluoroethylene (PTFE) tape and coupled with optical grease on a single APD of the array, yielded 15% (full width at half maximum, FWHM) at 511 keV. Stability tests over 9 months of operation showed that the APD arrays do not degrade appreciably. These results demonstrate the ability to decode densely packed LSO scintillation blocks with compact APD arrays. The good timing and energy resolution makes these detectors suitable for high resolution PET.

AB - Avalanche photodiodes (APDs) have proven to be useful as light detectors for high resolution positron emission tomography (PET). Their compactness makes these devices excellent candidates for replacing bulky photomultiplier tubes (PMTs) in PET systems where space limitations are an issue. The readout of densely packed, 10 × 10 lutetium oxyorthosilicate (LSO) block detectors (crystal size 2.0 × 2.0 × 12 mm3) with custom-built monolithic 3 × 3 APD arrays was investigated. The APDs had a 5 × 5 mm2 active surface and were arranged on a 6.25 mm pitch. The dead space on the edges of the array was 1.25 mm. The APDs were operated at a bias voltage of approximately 380 V for a gain of 100 and a dark current of 10 nA per APD. The standard deviation in gain between the APDs in the array ranged from 1.8 to 6.5% as the gain was varied from 50 to 108. A fast, low-noise, multi-channel charge sensitive preamplifier application-specific integrated circuit (ASIC) was developed for the APD readout. The amplifier had a rise time of 8 ns, a noise floor of 515 e- rms and a 9 e- pF-1 noise slope. An acquired flood image showed that all 100 crystals from the block detector could be resolved. Timing measurements with single-channel LSO-APD detectors, as well as with the array, against a plastic scintillator and PMT assembly showed a time resolution of 1.2 ns and 2.5 ns, respectively. The energy resolution measured with a single 4.0 × 4.0 × 10 mm3 LSO crystal, wrapped in four-layer polytetrafluoroethylene (PTFE) tape and coupled with optical grease on a single APD of the array, yielded 15% (full width at half maximum, FWHM) at 511 keV. Stability tests over 9 months of operation showed that the APD arrays do not degrade appreciably. These results demonstrate the ability to decode densely packed LSO scintillation blocks with compact APD arrays. The good timing and energy resolution makes these detectors suitable for high resolution PET.

UR - http://www.scopus.com/inward/record.url?scp=4644367934&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=4644367934&partnerID=8YFLogxK

U2 - 10.1088/0031-9155/49/18/008

DO - 10.1088/0031-9155/49/18/008

M3 - Article

VL - 49

SP - 4305

EP - 4319

JO - Physics in Medicine and Biology

JF - Physics in Medicine and Biology

SN - 0031-9155

IS - 18

ER -