Lockjaw encodes a zebrafish tfap2a required for early neural crest development

Robert D. Knight, Sreelaja Nair, Sarah S. Nelson, Ali Afshar, Yashar Javidan, Robert Geisler, Gerd Joerg Rauch, Thomas F. Schilling

Research output: Contribution to journalReview article

149 Scopus citations

Abstract

The neural crest is a uniquely vertebrate cell type that gives rise to much of the craniofacial skeleton, pigment cells and peripheral nervous system, yet its specification and diversification during embryogenesis are poorly understood. Zebrafish homozygous for the lockjaw (low) mutation show defects in all of these derivatives and we show that low (allelic with montblanc) encodes a zebrafish tfap2a, one of a small family of transcription factors implicated in epidermal and neural crest development. A point mutation in low truncates the DNA binding and dimerization domains of tfap2a, causing a loss of function. Consistent with this, injection of antisense morpholino oligonucleotides directed against splice sites in tfap2a into wild-type embryos produces a phenotype identical to low. Analysis of early ectodermal markers revealed that neural crest specification and migration are disrupted in low mutant embryos. TUNEL labeling of dying cells in mutants revealed a transient period of apoptosis in crest cells prior to and during their migration. In the cranial neural crest, gene expression in the mandibular arch is unaffected in low mutants, in contrast to the hyoid arch, which shows severe reductions in dlx2 and hoxa2 expression. Mosaic analysis, using cell transplantation, demonstrated that neural crest defects in low are cell autonomous and secondarily cause disruptions in surrounding mesoderm. These studies demonstrate that low is required for early steps in neural crest development and suggest that tfap2a is essential for the survival of a subset of neural crest derivatives.

Original languageEnglish (US)
Pages (from-to)5755-5768
Number of pages14
JournalDevelopment
Volume130
Issue number23
DOIs
StatePublished - Dec 1 2003
Externally publishedYes

Keywords

  • AP2
  • Apoptosis
  • Craniofacial
  • Danio rerio
  • Hox
  • Montblanc
  • Pigment

ASJC Scopus subject areas

  • Molecular Biology
  • Developmental Biology

Fingerprint Dive into the research topics of 'Lockjaw encodes a zebrafish tfap2a required for early neural crest development'. Together they form a unique fingerprint.

  • Cite this

    Knight, R. D., Nair, S., Nelson, S. S., Afshar, A., Javidan, Y., Geisler, R., Rauch, G. J., & Schilling, T. F. (2003). Lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development, 130(23), 5755-5768. https://doi.org/10.1242/dev.00575