Location matters: Clarifying the concept of nuclear and cytosolic CaMKII subtypes

Shikha Mishra, Charles B B Gray, Shigeki Miyamoto, Donald M Bers, Joan Heller Brown

Research output: Contribution to journalArticlepeer-review

60 Scopus citations


Rationale: Differential effects of δ B and δ C subtypes of Ca 2+/calmodulin-dependent protein kinase (CaMKII) on cardiomyocyte Ca 2+ handling and survival have been suggested to result from their respective nuclear versus cytosolic localizations. CaMKIIδ subtype localization and its relationship to enzyme activation and target phosphorylation have not, however, been systematically evaluated. Objective: To determine whether CaMKIIδ subtypes are restricted to a particular subcellular location and assess the relationship of localization to enzyme activation and function. Methods and Results: CaMKIIδ is highly expressed in mouse heart and cardiomyocytes and concentrated in sarcoplasmic reticulum (SR)/membrane and nuclear fractions. CaMKIIδ B and δ C subtypes differ by a nuclear localization sequence, but both are present in nuclear and SR/membrane fractions. Nonselective subtype distribution is also seen in mice overexpressing CaMKIIδ B or δ C, even in a CaMKIIδ null background. Fluorescently tagged CaMKIIδ B expressed in cardiomyocytes concentrates in nuclei whereas δ C concentrates in cytosol, but neither localization is exclusive. Mouse hearts exposed to phenylephrine show selective CaMKIIδ activation in the nuclear (versus SR) compartment, whereas caffeine selectively activates CaMKIIδ in SR (versus nuclei), independent of subtype. Compartmentalized activation extends to functional differences in target phosphorylation at CaMKII sites: phenylephrine increases histone deacetylase 5 phosphorylation (Ser498) but not phospholamban (Thr17), whereas the converse holds for caffeine. Conclusions: These studies demonstrate that CaMKIIδ B and δ C are not exclusively restricted to the nucleus and cytosol and that spatial and functional specificity in CaMKIIδ activation is elicited by mobilization of different Ca 2+ stores rather than by compartmentalized subtype localization.

Original languageEnglish (US)
Pages (from-to)1354-1362
Number of pages9
JournalCirculation Research
Issue number12
StatePublished - Dec 9 2011


  • Ca /calmodulin-dependent protein kinase
  • Heart
  • Nuclear localization
  • Sarcoplasmic reticulum
  • Splice variants

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine


Dive into the research topics of 'Location matters: Clarifying the concept of nuclear and cytosolic CaMKII subtypes'. Together they form a unique fingerprint.

Cite this