Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis

Larissa Eiselein, Dennis W Wilson, Michael W. Lamé, John C Rutledge

Research output: Contribution to journalArticle

71 Citations (Scopus)

Abstract

Products generated from lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TGRL) are reported to increase endothelial layer permeability. We hypothesize that these increases in permeability result from the active rearrangement and dissolution of the junctional barrier in human aortic endothelial cells, as well as induction of the apoptotic cascade. Human aortic endothelial cells were treated with TGRL lipolysis products generated from coincubation of human TGRL plus lipoprotein lipase. Measurement of transendothelial electrical resistance demonstrated a time-dependent decrease in endothelial barrier function in response to TGRL lipolysis products. Immunofluorescent localization of zonula occludens-1 (ZO-1) showed radial rearrangement along cell borders after 1.5 h of treatment with lipolysis products. A concurrent redistribution of F-actin from the cell body to the cell margins was observed via rhodamine phalloidin staining. Immunofluorescent imaging for occludin and vascular endothelial cadherin showed that these proteins relocalize as well, although these changes are less prominent than for ZO-1. Western analysis of cells exposed to lipolysis products for 3 h revealed the fragmentation of ZO-1, a reduction in occludin, and no change of vascular endothelial cadherin. Lipolysis products also increased caspase-3 activity and induced nuclear fragmentation. Treatments did not cause oncosis in cells at any point during the incubation. These results demonstrate that TGRL lipolysis products play an important role in the regulation of endothelial permeability, the organization of the actin cytoskeleton, the localization and expression of junctional proteins, especially ZO-1, and the induction of apoptosis.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume292
Issue number6
DOIs
StatePublished - Jun 2007

Fingerprint

Tight Junctions
Lipolysis
Lipoproteins
Actins
Permeability
Triglycerides
Apoptosis
Occludin
Lipoprotein Lipase
Endothelial Cells
Zonula Occludens-1 Protein
Electric Impedance
Actin Cytoskeleton
Caspase 3
Hydrolysis
Staining and Labeling
Proteins

Keywords

  • Endothelium
  • Lipoprotein lipase

ASJC Scopus subject areas

  • Physiology

Cite this

@article{925c4d404b264c30a81a15131d2f7075,
title = "Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis",
abstract = "Products generated from lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TGRL) are reported to increase endothelial layer permeability. We hypothesize that these increases in permeability result from the active rearrangement and dissolution of the junctional barrier in human aortic endothelial cells, as well as induction of the apoptotic cascade. Human aortic endothelial cells were treated with TGRL lipolysis products generated from coincubation of human TGRL plus lipoprotein lipase. Measurement of transendothelial electrical resistance demonstrated a time-dependent decrease in endothelial barrier function in response to TGRL lipolysis products. Immunofluorescent localization of zonula occludens-1 (ZO-1) showed radial rearrangement along cell borders after 1.5 h of treatment with lipolysis products. A concurrent redistribution of F-actin from the cell body to the cell margins was observed via rhodamine phalloidin staining. Immunofluorescent imaging for occludin and vascular endothelial cadherin showed that these proteins relocalize as well, although these changes are less prominent than for ZO-1. Western analysis of cells exposed to lipolysis products for 3 h revealed the fragmentation of ZO-1, a reduction in occludin, and no change of vascular endothelial cadherin. Lipolysis products also increased caspase-3 activity and induced nuclear fragmentation. Treatments did not cause oncosis in cells at any point during the incubation. These results demonstrate that TGRL lipolysis products play an important role in the regulation of endothelial permeability, the organization of the actin cytoskeleton, the localization and expression of junctional proteins, especially ZO-1, and the induction of apoptosis.",
keywords = "Endothelium, Lipoprotein lipase",
author = "Larissa Eiselein and Wilson, {Dennis W} and Lam{\'e}, {Michael W.} and Rutledge, {John C}",
year = "2007",
month = "6",
doi = "10.1152/ajpheart.00686.2006",
language = "English (US)",
volume = "292",
journal = "American Journal of Physiology - Renal Fluid and Electrolyte Physiology",
issn = "1931-857X",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Lipolysis products from triglyceride-rich lipoproteins increase endothelial permeability, perturb zonula occludens-1 and F-actin, and induce apoptosis

AU - Eiselein, Larissa

AU - Wilson, Dennis W

AU - Lamé, Michael W.

AU - Rutledge, John C

PY - 2007/6

Y1 - 2007/6

N2 - Products generated from lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TGRL) are reported to increase endothelial layer permeability. We hypothesize that these increases in permeability result from the active rearrangement and dissolution of the junctional barrier in human aortic endothelial cells, as well as induction of the apoptotic cascade. Human aortic endothelial cells were treated with TGRL lipolysis products generated from coincubation of human TGRL plus lipoprotein lipase. Measurement of transendothelial electrical resistance demonstrated a time-dependent decrease in endothelial barrier function in response to TGRL lipolysis products. Immunofluorescent localization of zonula occludens-1 (ZO-1) showed radial rearrangement along cell borders after 1.5 h of treatment with lipolysis products. A concurrent redistribution of F-actin from the cell body to the cell margins was observed via rhodamine phalloidin staining. Immunofluorescent imaging for occludin and vascular endothelial cadherin showed that these proteins relocalize as well, although these changes are less prominent than for ZO-1. Western analysis of cells exposed to lipolysis products for 3 h revealed the fragmentation of ZO-1, a reduction in occludin, and no change of vascular endothelial cadherin. Lipolysis products also increased caspase-3 activity and induced nuclear fragmentation. Treatments did not cause oncosis in cells at any point during the incubation. These results demonstrate that TGRL lipolysis products play an important role in the regulation of endothelial permeability, the organization of the actin cytoskeleton, the localization and expression of junctional proteins, especially ZO-1, and the induction of apoptosis.

AB - Products generated from lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TGRL) are reported to increase endothelial layer permeability. We hypothesize that these increases in permeability result from the active rearrangement and dissolution of the junctional barrier in human aortic endothelial cells, as well as induction of the apoptotic cascade. Human aortic endothelial cells were treated with TGRL lipolysis products generated from coincubation of human TGRL plus lipoprotein lipase. Measurement of transendothelial electrical resistance demonstrated a time-dependent decrease in endothelial barrier function in response to TGRL lipolysis products. Immunofluorescent localization of zonula occludens-1 (ZO-1) showed radial rearrangement along cell borders after 1.5 h of treatment with lipolysis products. A concurrent redistribution of F-actin from the cell body to the cell margins was observed via rhodamine phalloidin staining. Immunofluorescent imaging for occludin and vascular endothelial cadherin showed that these proteins relocalize as well, although these changes are less prominent than for ZO-1. Western analysis of cells exposed to lipolysis products for 3 h revealed the fragmentation of ZO-1, a reduction in occludin, and no change of vascular endothelial cadherin. Lipolysis products also increased caspase-3 activity and induced nuclear fragmentation. Treatments did not cause oncosis in cells at any point during the incubation. These results demonstrate that TGRL lipolysis products play an important role in the regulation of endothelial permeability, the organization of the actin cytoskeleton, the localization and expression of junctional proteins, especially ZO-1, and the induction of apoptosis.

KW - Endothelium

KW - Lipoprotein lipase

UR - http://www.scopus.com/inward/record.url?scp=34249324303&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34249324303&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.00686.2006

DO - 10.1152/ajpheart.00686.2006

M3 - Article

C2 - 17259442

AN - SCOPUS:34249324303

VL - 292

JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology

SN - 1931-857X

IS - 6

ER -