Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death

Gene G Gurkoff, Christopher C. Giza, David A. Hovda

Research output: Contribution to journalArticle

86 Citations (Scopus)

Abstract

Lateral fluid percussion injury (LFP), a model of mild-moderate concussion, leads to the temporary loss of the capacity for experience-dependent plasticity in developing rats. To determine if this injury-induced loss in capacity for plasticity is due to cell death, we conducted stereological measurements within the cerebral cortex and CA3 of the hippocampus 2 weeks following mild, moderate or severe LFP in the post-natal day 19 (P19) rat. Results indicated that there was no significant change in the absolute number of neurons, regardless of injury severity, in either the ipsilateral cortex (sham = 10.6 ± 1.7, mild = 11.5 ± 2.1, moderate = 10.0 ± 1.0, severe = 10.9 ± 1.3 million neurons) or CA3 region of the hippocampus (sham = 251 ± 38, mild = 289 ± 2, moderate = 245 ± 48, severe = 255 ± 62 thousand neurons). Even though there was no evidence of a significant degree of injury-induced cell death, animals exhibited cognitive deficits as revealed in a Morris water maze task (MWM). The MWM results indicated that regardless of injury severity, P19-injured rats exhibited a significant increase in escape latency compared to age-matched shams (injury by day; P < 0.001) and a significant increase in the number of trials needed to reach criterion (P < 0.05). Analysis of a probe trial one week post-MWM training, however, indicated that there was no deficit in storage or recall of the learned behavior as analyzed by platform hits (sham = 2.9 ± 0.37, mild = 2.0 ± 0.40, moderate = 1 ± 0, severe = 2.8 ± 0.62) or percent time spent in, or immediately surrounding, the platform area (sham = 13.5 ± 1.71, mild = 10.8 ± 2.32, moderate = 12.7 ± 0, severe = 13.5 ± 1.69). Taken together, these results indicate that while LFP in P19-injured animals does not lead to significant cell death, it does generate acute, mild deficits in MWM performance.

Original languageEnglish (US)
Pages (from-to)24-36
Number of pages13
JournalBrain Research
Volume1077
Issue number1
DOIs
StatePublished - Mar 10 2006

Fingerprint

Percussion
Cell Death
Wounds and Injuries
Water
Neurons
Hippocampus
Brain Concussion
Task Performance and Analysis
Cerebral Cortex

Keywords

  • Cell death
  • Dysfunction
  • Hippocampus
  • Morris water maze
  • Stereology
  • Traumatic brain injury

ASJC Scopus subject areas

  • Developmental Biology
  • Molecular Biology
  • Clinical Neurology
  • Neuroscience(all)

Cite this

Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death. / Gurkoff, Gene G; Giza, Christopher C.; Hovda, David A.

In: Brain Research, Vol. 1077, No. 1, 10.03.2006, p. 24-36.

Research output: Contribution to journalArticle

@article{beab2fe087ea4e7b96cd0026051571f1,
title = "Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death",
abstract = "Lateral fluid percussion injury (LFP), a model of mild-moderate concussion, leads to the temporary loss of the capacity for experience-dependent plasticity in developing rats. To determine if this injury-induced loss in capacity for plasticity is due to cell death, we conducted stereological measurements within the cerebral cortex and CA3 of the hippocampus 2 weeks following mild, moderate or severe LFP in the post-natal day 19 (P19) rat. Results indicated that there was no significant change in the absolute number of neurons, regardless of injury severity, in either the ipsilateral cortex (sham = 10.6 ± 1.7, mild = 11.5 ± 2.1, moderate = 10.0 ± 1.0, severe = 10.9 ± 1.3 million neurons) or CA3 region of the hippocampus (sham = 251 ± 38, mild = 289 ± 2, moderate = 245 ± 48, severe = 255 ± 62 thousand neurons). Even though there was no evidence of a significant degree of injury-induced cell death, animals exhibited cognitive deficits as revealed in a Morris water maze task (MWM). The MWM results indicated that regardless of injury severity, P19-injured rats exhibited a significant increase in escape latency compared to age-matched shams (injury by day; P < 0.001) and a significant increase in the number of trials needed to reach criterion (P < 0.05). Analysis of a probe trial one week post-MWM training, however, indicated that there was no deficit in storage or recall of the learned behavior as analyzed by platform hits (sham = 2.9 ± 0.37, mild = 2.0 ± 0.40, moderate = 1 ± 0, severe = 2.8 ± 0.62) or percent time spent in, or immediately surrounding, the platform area (sham = 13.5 ± 1.71, mild = 10.8 ± 2.32, moderate = 12.7 ± 0, severe = 13.5 ± 1.69). Taken together, these results indicate that while LFP in P19-injured animals does not lead to significant cell death, it does generate acute, mild deficits in MWM performance.",
keywords = "Cell death, Dysfunction, Hippocampus, Morris water maze, Stereology, Traumatic brain injury",
author = "Gurkoff, {Gene G} and Giza, {Christopher C.} and Hovda, {David A.}",
year = "2006",
month = "3",
day = "10",
doi = "10.1016/j.brainres.2006.01.011",
language = "English (US)",
volume = "1077",
pages = "24--36",
journal = "Brain Research",
issn = "0006-8993",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death

AU - Gurkoff, Gene G

AU - Giza, Christopher C.

AU - Hovda, David A.

PY - 2006/3/10

Y1 - 2006/3/10

N2 - Lateral fluid percussion injury (LFP), a model of mild-moderate concussion, leads to the temporary loss of the capacity for experience-dependent plasticity in developing rats. To determine if this injury-induced loss in capacity for plasticity is due to cell death, we conducted stereological measurements within the cerebral cortex and CA3 of the hippocampus 2 weeks following mild, moderate or severe LFP in the post-natal day 19 (P19) rat. Results indicated that there was no significant change in the absolute number of neurons, regardless of injury severity, in either the ipsilateral cortex (sham = 10.6 ± 1.7, mild = 11.5 ± 2.1, moderate = 10.0 ± 1.0, severe = 10.9 ± 1.3 million neurons) or CA3 region of the hippocampus (sham = 251 ± 38, mild = 289 ± 2, moderate = 245 ± 48, severe = 255 ± 62 thousand neurons). Even though there was no evidence of a significant degree of injury-induced cell death, animals exhibited cognitive deficits as revealed in a Morris water maze task (MWM). The MWM results indicated that regardless of injury severity, P19-injured rats exhibited a significant increase in escape latency compared to age-matched shams (injury by day; P < 0.001) and a significant increase in the number of trials needed to reach criterion (P < 0.05). Analysis of a probe trial one week post-MWM training, however, indicated that there was no deficit in storage or recall of the learned behavior as analyzed by platform hits (sham = 2.9 ± 0.37, mild = 2.0 ± 0.40, moderate = 1 ± 0, severe = 2.8 ± 0.62) or percent time spent in, or immediately surrounding, the platform area (sham = 13.5 ± 1.71, mild = 10.8 ± 2.32, moderate = 12.7 ± 0, severe = 13.5 ± 1.69). Taken together, these results indicate that while LFP in P19-injured animals does not lead to significant cell death, it does generate acute, mild deficits in MWM performance.

AB - Lateral fluid percussion injury (LFP), a model of mild-moderate concussion, leads to the temporary loss of the capacity for experience-dependent plasticity in developing rats. To determine if this injury-induced loss in capacity for plasticity is due to cell death, we conducted stereological measurements within the cerebral cortex and CA3 of the hippocampus 2 weeks following mild, moderate or severe LFP in the post-natal day 19 (P19) rat. Results indicated that there was no significant change in the absolute number of neurons, regardless of injury severity, in either the ipsilateral cortex (sham = 10.6 ± 1.7, mild = 11.5 ± 2.1, moderate = 10.0 ± 1.0, severe = 10.9 ± 1.3 million neurons) or CA3 region of the hippocampus (sham = 251 ± 38, mild = 289 ± 2, moderate = 245 ± 48, severe = 255 ± 62 thousand neurons). Even though there was no evidence of a significant degree of injury-induced cell death, animals exhibited cognitive deficits as revealed in a Morris water maze task (MWM). The MWM results indicated that regardless of injury severity, P19-injured rats exhibited a significant increase in escape latency compared to age-matched shams (injury by day; P < 0.001) and a significant increase in the number of trials needed to reach criterion (P < 0.05). Analysis of a probe trial one week post-MWM training, however, indicated that there was no deficit in storage or recall of the learned behavior as analyzed by platform hits (sham = 2.9 ± 0.37, mild = 2.0 ± 0.40, moderate = 1 ± 0, severe = 2.8 ± 0.62) or percent time spent in, or immediately surrounding, the platform area (sham = 13.5 ± 1.71, mild = 10.8 ± 2.32, moderate = 12.7 ± 0, severe = 13.5 ± 1.69). Taken together, these results indicate that while LFP in P19-injured animals does not lead to significant cell death, it does generate acute, mild deficits in MWM performance.

KW - Cell death

KW - Dysfunction

KW - Hippocampus

KW - Morris water maze

KW - Stereology

KW - Traumatic brain injury

UR - http://www.scopus.com/inward/record.url?scp=33644947402&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33644947402&partnerID=8YFLogxK

U2 - 10.1016/j.brainres.2006.01.011

DO - 10.1016/j.brainres.2006.01.011

M3 - Article

C2 - 16490184

AN - SCOPUS:33644947402

VL - 1077

SP - 24

EP - 36

JO - Brain Research

JF - Brain Research

SN - 0006-8993

IS - 1

ER -