Laparoscopic anatomy of the abdomen in dorsally recumbent horses

Larry D Galuppo, Jack R. Snyder, John Pascoe, Susan M Stover, Richard Morgan

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Objectives - To provide an accurate and detailed description of the laparoscopic anatomy of the abdomen of horses positioned in dorsal recumbency and to compare those observations with laparoscopic anatomy of standing horses. The effects of laparoscopy and positional changes on arterial blood pressure and blood gas values also were investigated. Design - Descriptive anatomic study. Sample Population - Laparoscopy was performed on 6 horses (2 mares, 2 geldings, and 2 stallions) to record the normal laparoscopic anatomy of the abdomen in dorsal recumbency. Procedure - Feed was withheld from all horses for 36 hours. Horses, under general anesthesia, were examined in horizontal and inclined positions (head-up and head-down). Intermittent positive-pressure ventilation was used, arterial blood pressure was continuously monitored, and samples for arterial blood gas measurements were taken at intervals. Results - The main structures of diagnostic relevance observed in the caudal region of the abdomen were the urinary bladder, mesorchium and ductus deferens (left and right), left and right vaginal rings, insertion of the pre-pubic tendon, random segments of jejunum and descending colon, pelvic flexure of the ascending colon, body of the cecum, and cecocolic fold. The main structures observed in the cranial region of the abdomen were ventral surface of the diaphragm, falciform ligament and round ligaments of the liver, ventral portion of the left lateral, left medial, quadrate, and right lateral lobes of the liver, spleen, right and left ventral colons, sternal flexure of the ascending colon, apex of the cecum, and stomach. Conclusions - Alterations in cardiovascular and respiratory function in response to pneumoperitoneum and various positional changes indicated the need for continuous and throrough anesthetic monitoring and support. Comparison of anatomic observations made in dorsally recumbent, inclined horses with those reported for standing horses should enable practitioners to make patient positioning decisions that best suit access to specific visceral structures. Development of special instrumentation for manipulation of the viscera in horses, particularly the intestinal tract, would increase the diagnostic and therapeutic capabilities of laparoscopy during dorsal recumbency.

Original languageEnglish (US)
Pages (from-to)923-931
Number of pages9
JournalAmerican Journal of Veterinary Research
Volume57
Issue number6
StatePublished - Jun 1996

Fingerprint

abdomen
Abdomen
Horses
Anatomy
horses
laparoscopy
colon
Laparoscopy
Ascending Colon
Cecum
blood gases
ligaments
cecum
blood pressure
Arterial Pressure
Gases
Head
ductus deferens
Female Contraceptive Devices
Intermittent Positive-Pressure Ventilation

ASJC Scopus subject areas

  • veterinary(all)

Cite this

Laparoscopic anatomy of the abdomen in dorsally recumbent horses. / Galuppo, Larry D; Snyder, Jack R.; Pascoe, John; Stover, Susan M; Morgan, Richard.

In: American Journal of Veterinary Research, Vol. 57, No. 6, 06.1996, p. 923-931.

Research output: Contribution to journalArticle

@article{2daa379920ab4d3bb0c52e6a8fc9ba38,
title = "Laparoscopic anatomy of the abdomen in dorsally recumbent horses",
abstract = "Objectives - To provide an accurate and detailed description of the laparoscopic anatomy of the abdomen of horses positioned in dorsal recumbency and to compare those observations with laparoscopic anatomy of standing horses. The effects of laparoscopy and positional changes on arterial blood pressure and blood gas values also were investigated. Design - Descriptive anatomic study. Sample Population - Laparoscopy was performed on 6 horses (2 mares, 2 geldings, and 2 stallions) to record the normal laparoscopic anatomy of the abdomen in dorsal recumbency. Procedure - Feed was withheld from all horses for 36 hours. Horses, under general anesthesia, were examined in horizontal and inclined positions (head-up and head-down). Intermittent positive-pressure ventilation was used, arterial blood pressure was continuously monitored, and samples for arterial blood gas measurements were taken at intervals. Results - The main structures of diagnostic relevance observed in the caudal region of the abdomen were the urinary bladder, mesorchium and ductus deferens (left and right), left and right vaginal rings, insertion of the pre-pubic tendon, random segments of jejunum and descending colon, pelvic flexure of the ascending colon, body of the cecum, and cecocolic fold. The main structures observed in the cranial region of the abdomen were ventral surface of the diaphragm, falciform ligament and round ligaments of the liver, ventral portion of the left lateral, left medial, quadrate, and right lateral lobes of the liver, spleen, right and left ventral colons, sternal flexure of the ascending colon, apex of the cecum, and stomach. Conclusions - Alterations in cardiovascular and respiratory function in response to pneumoperitoneum and various positional changes indicated the need for continuous and throrough anesthetic monitoring and support. Comparison of anatomic observations made in dorsally recumbent, inclined horses with those reported for standing horses should enable practitioners to make patient positioning decisions that best suit access to specific visceral structures. Development of special instrumentation for manipulation of the viscera in horses, particularly the intestinal tract, would increase the diagnostic and therapeutic capabilities of laparoscopy during dorsal recumbency.",
author = "Galuppo, {Larry D} and Snyder, {Jack R.} and John Pascoe and Stover, {Susan M} and Richard Morgan",
year = "1996",
month = "6",
language = "English (US)",
volume = "57",
pages = "923--931",
journal = "American Journal of Veterinary Research",
issn = "0002-9645",
publisher = "American Veterinary Medical Association",
number = "6",

}

TY - JOUR

T1 - Laparoscopic anatomy of the abdomen in dorsally recumbent horses

AU - Galuppo, Larry D

AU - Snyder, Jack R.

AU - Pascoe, John

AU - Stover, Susan M

AU - Morgan, Richard

PY - 1996/6

Y1 - 1996/6

N2 - Objectives - To provide an accurate and detailed description of the laparoscopic anatomy of the abdomen of horses positioned in dorsal recumbency and to compare those observations with laparoscopic anatomy of standing horses. The effects of laparoscopy and positional changes on arterial blood pressure and blood gas values also were investigated. Design - Descriptive anatomic study. Sample Population - Laparoscopy was performed on 6 horses (2 mares, 2 geldings, and 2 stallions) to record the normal laparoscopic anatomy of the abdomen in dorsal recumbency. Procedure - Feed was withheld from all horses for 36 hours. Horses, under general anesthesia, were examined in horizontal and inclined positions (head-up and head-down). Intermittent positive-pressure ventilation was used, arterial blood pressure was continuously monitored, and samples for arterial blood gas measurements were taken at intervals. Results - The main structures of diagnostic relevance observed in the caudal region of the abdomen were the urinary bladder, mesorchium and ductus deferens (left and right), left and right vaginal rings, insertion of the pre-pubic tendon, random segments of jejunum and descending colon, pelvic flexure of the ascending colon, body of the cecum, and cecocolic fold. The main structures observed in the cranial region of the abdomen were ventral surface of the diaphragm, falciform ligament and round ligaments of the liver, ventral portion of the left lateral, left medial, quadrate, and right lateral lobes of the liver, spleen, right and left ventral colons, sternal flexure of the ascending colon, apex of the cecum, and stomach. Conclusions - Alterations in cardiovascular and respiratory function in response to pneumoperitoneum and various positional changes indicated the need for continuous and throrough anesthetic monitoring and support. Comparison of anatomic observations made in dorsally recumbent, inclined horses with those reported for standing horses should enable practitioners to make patient positioning decisions that best suit access to specific visceral structures. Development of special instrumentation for manipulation of the viscera in horses, particularly the intestinal tract, would increase the diagnostic and therapeutic capabilities of laparoscopy during dorsal recumbency.

AB - Objectives - To provide an accurate and detailed description of the laparoscopic anatomy of the abdomen of horses positioned in dorsal recumbency and to compare those observations with laparoscopic anatomy of standing horses. The effects of laparoscopy and positional changes on arterial blood pressure and blood gas values also were investigated. Design - Descriptive anatomic study. Sample Population - Laparoscopy was performed on 6 horses (2 mares, 2 geldings, and 2 stallions) to record the normal laparoscopic anatomy of the abdomen in dorsal recumbency. Procedure - Feed was withheld from all horses for 36 hours. Horses, under general anesthesia, were examined in horizontal and inclined positions (head-up and head-down). Intermittent positive-pressure ventilation was used, arterial blood pressure was continuously monitored, and samples for arterial blood gas measurements were taken at intervals. Results - The main structures of diagnostic relevance observed in the caudal region of the abdomen were the urinary bladder, mesorchium and ductus deferens (left and right), left and right vaginal rings, insertion of the pre-pubic tendon, random segments of jejunum and descending colon, pelvic flexure of the ascending colon, body of the cecum, and cecocolic fold. The main structures observed in the cranial region of the abdomen were ventral surface of the diaphragm, falciform ligament and round ligaments of the liver, ventral portion of the left lateral, left medial, quadrate, and right lateral lobes of the liver, spleen, right and left ventral colons, sternal flexure of the ascending colon, apex of the cecum, and stomach. Conclusions - Alterations in cardiovascular and respiratory function in response to pneumoperitoneum and various positional changes indicated the need for continuous and throrough anesthetic monitoring and support. Comparison of anatomic observations made in dorsally recumbent, inclined horses with those reported for standing horses should enable practitioners to make patient positioning decisions that best suit access to specific visceral structures. Development of special instrumentation for manipulation of the viscera in horses, particularly the intestinal tract, would increase the diagnostic and therapeutic capabilities of laparoscopy during dorsal recumbency.

UR - http://www.scopus.com/inward/record.url?scp=0030160369&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030160369&partnerID=8YFLogxK

M3 - Article

VL - 57

SP - 923

EP - 931

JO - American Journal of Veterinary Research

JF - American Journal of Veterinary Research

SN - 0002-9645

IS - 6

ER -