Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes

Sridevi Devaraj, Peter Tobias, Ishwarlal Jialal

Research output: Contribution to journalArticle

101 Scopus citations

Abstract

Type 1 diabetes (T1DM) is associated with increased vascular complications and is a pro-inflammatory state. Recent findings have shown increased TLR2 and 4 expression, signaling, ligands, and functional activation in T1DM subjects compared to controls and further accentuated in T1DM with microvascular complications. Thus, the aim of this study was to examine if genetic deficiency of TLR4 attenuates the increased inflammation associated with T1DM using the streptozotocin-induced diabetic mouse model. C57BL/6 and TLR4 -/- mice were obtained and studied in the native state and following induction of diabetes using streptozotocin. Diabetic (WT+STZ) mice had increased expression of both TLR2 and TLR4, while TLR4 -/- STZ mice had increased expression only of TLR2, but not TLR4 compared to the non-diabetic mice TLR2 expression was significantly increased with STZ-induced diabetes and was unaffected by knockout of TLR4. Also, levels of MyD88, IRAK-1 protein phosphorylation, Trif, IRF3, and NF-κB activity were significantly reduced in TLR4 -/- +STZ mice compared to the WT+STZ mice. WT+STZ mice exhibited significantly increased levels of serum and macrophage IL-1β, IL-6, KC/IL-8, IP-10, MCP-1, IFN beta and TNF-α compared to WT mice and this was significantly attenuated in TLR4 -/- +STZ mice (P<0.01). Thus, TLR4 contributes to the pro-inflammatory state and TLR4KO attenuates inflammation in diabetes.

Original languageEnglish (US)
Pages (from-to)441-445
Number of pages5
JournalCytokine
Volume55
Issue number3
DOIs
StatePublished - Sep 2011

Keywords

  • Complications
  • Cytokine
  • Diabetes
  • Inflammation
  • Toll-like receptor

ASJC Scopus subject areas

  • Immunology
  • Immunology and Allergy
  • Hematology
  • Biochemistry
  • Molecular Biology

Fingerprint Dive into the research topics of 'Knockout of toll-like receptor-4 attenuates the pro-inflammatory state of diabetes'. Together they form a unique fingerprint.

  • Cite this