Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter

Hsin Ya Yang, Paul E. Mains, Francis J. McNally

Research output: Contribution to journalArticle

60 Scopus citations

Abstract

In animals, female meiotic spindles are attached to the egg cortex in a perpendicular orientation at anaphase to allow the selective disposal of three haploid chromosome sets into polar bodies. We have identified a complex of interacting Caenorhabditis elegans proteins that are involved in the earliest step in asymmetric positioning of anastral meiotic spindles, translocation to the cortex. This complex is composed of the kinesin-1 heavy chain orthologue, UNC-116, the kinesin light chain orthologues, KLC-1 and -2, and a novel cargo adaptor, KCA-1. Depletion of any of these subunits by RNA interference resulted in meiosis I metaphase spindles that remained stationary at a position several micrometers from the cell cortex during the time when wild-type spindles translocated to the cortex. After this prolonged stationary period, unc-116(RNAi) spindles moved to the cortex through a partially redundant mechanism that is dependent on the anaphase-promoting complex. This study thus reveals two sequential mechanisms for translocating anastral spindles to the oocyte cortex.

Original languageEnglish (US)
Pages (from-to)447-457
Number of pages11
JournalJournal of Cell Biology
Volume169
Issue number3
DOIs
StatePublished - May 9 2005

ASJC Scopus subject areas

  • Cell Biology

Fingerprint Dive into the research topics of 'Kinesin-1 mediates translocation of the meiotic spindle to the oocyte cortex through KCA-1, a novel cargo adapter'. Together they form a unique fingerprint.

  • Cite this