Involvement of PPARγ co-activator-1, nuclear respiratory factors 1 and 2, and PPARα in the adaptive response to endurance exercise

Research output: Contribution to journalArticlepeer-review

113 Scopus citations


Endurance exercise training induces an increase in the respiratory capacity of muscle, resulting in an increased capacity to generate ATP as well as improved efficiency of muscle contraction. Such adaptations are largely the result of a coordinated genetic response that increases mitochondrial proteins, fatty acid oxidation enzymes and the exercise- and insulin-stimulated glucose transporter GLUT4, and shifts the contractile and regulatory proteins to their more efficient isoforms. In recent years a number of the transcriptional regulators involved in this genetic response have been identified and these factors can be classified into two different groups. The first group comprises transcription factors such as nuclear respiratory factors (NRF) 1 and 2 and PPARα that bind DNA in a sequence-specific manner. The second group, referred to as transcriptional co-activators, alter transcription without directly binding to DNA. The PPARγ co-activator (PGC) family of proteins have been identified as the central family of transcriptional co-activators for induction of mitochondrial biogenesis. PGC-1α is activated by exercise, and is sufficient to produce the endurance phenotype through direct interactions with NRF-1 and PPARα, and potentially NRF-2. Furthering the understanding of the activation of PGC proteins following exercise has implications beyond improving athletic performance, including the possibility of providing targets for the treatment of frailty in the elderly, obesity and diseases such as mitochondrial myopathies and diabetes.

Original languageEnglish (US)
Pages (from-to)269-273
Number of pages5
JournalProceedings of the Nutrition Society
Issue number2
StatePublished - May 2004
Externally publishedYes


  • Mitochondrial biogenesis
  • Skeletal muscle
  • Transcriptional co-activators

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • Food Science


Dive into the research topics of 'Involvement of PPARγ co-activator-1, nuclear respiratory factors 1 and 2, and PPARα in the adaptive response to endurance exercise'. Together they form a unique fingerprint.

Cite this