Introduction to flow cytometry in biomedical engineering

Scott I. Simon, Mony Frojmovic

Research output: Contribution to journalArticlepeer-review


Flow cytometry employs a unique blend of modern technologies including lasers, fluid mechanics, optics, analog and digital electronics, and computers to enable the measurement of multiple parameters on individual cells at rates of thousands of cells per second. Over the last decade flow cytometry has had a tremendous impact on biology and medicine through advances in instrument detection, resolution, and the application of fluorescent molecules and highly specific monoclonal antibodies for immunophenotyping. The conventional immunologic application of subclassifying T lymphocytes according to differences in cell surface antigens has been greatly expanded. Probes are now available for the identification of an array of lymphocyte and leukocyte surface molecules, cytostructural proteins, and protein products of gene or oncogene expression. DNA and RNA specific fluorescent probes are now used to delve the mechanism of cell cycle and metabolism in lymphocytes and tumor cells. Slit-scan cytofluorometry provides greater morphologic resolution of fluorescence signals on a cellular and subcellular scale, enabling measurement of nuclear size and shape for identification of abnormal cells. Flow cytometry is also finding wide use in measurements of in vitro and in vivo cell function. Activation of leukocytes by fluorescently labeled cytokines or excitory peptides may be quantitated and kinetically monitored. Expression of functional surface antigens such as adhesive integrins or oxidative enzymes may also be quantitated under static and time course conditions. Physiological functions such as alterations in membrane potential, intracellular free calcium redistribution, intracellular pH, and changes in membrane fluidity may be measured on individual cells allowing assessment of functional heterogeneity in the populations being studied. The participants in this symposium will cover a wide range of these novel flow cytometric approaches. Content will focus on basic experimental techniques, instrumentation, cell preparation and measurement on commercial flow cytometers.

Original languageEnglish (US)
Pages (from-to)601
Number of pages1
JournalAnnals of Biomedical Engineering
Issue number5
StatePublished - 1991
Externally publishedYes

ASJC Scopus subject areas

  • Biomedical Engineering


Dive into the research topics of 'Introduction to flow cytometry in biomedical engineering'. Together they form a unique fingerprint.

Cite this